Design, Synthesis and Antimalarial Evaluation of New Trimethoxy Benzaldehyde Chalcones

doi.org/10.26538/tjnpr/v3i7.2

Authors

  • Asma’u N. Hamza Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria.
  • Abdullahi Y. Idris Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria.
  • Aliyu M. Musa Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria.
  • Amina B. Olorukooba Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria

Keywords:

Malaria,, Protease,, Chalcones, Synthesis,, Schmidt-Claisen condensation

Abstract

Proteases are validated drug target for inhibition of Plasmodium falciparum, the most virulent malaria parasite. This study guided by previous reports, designed trimethoxy benzaldehyde chalcone derivatives as potential protease inhibitors and antimalarial agents. They were synthesized by Schmidt-Claisen condensation reaction. The structures of these compounds were established using Fourier transform infrared (FT-IR), Proton, Carbon-13, as well as two- dimensional nuclear magnetic resonance (NMR) spectroscopy, and Mass Spectrometry (MS). The synthesized compounds were screened for in-vivo antimalarial activity in mice infected with Plasmodium berghei parasite, using curative model. (E)-1-(2,4-dimethoxyphenyl)-3-(2,3,4- trimethoxy-phenyl) prop-2-en-1-one (P2) displayed a significant activity, with activity comparable to that of quinine (10 mgkg-1) and chloroquine (25 mg kg-1) at a dose of 100 mgkg-1 in the curative test. However, (E)-1,3-bis(2,3,4-trimethoxyphenyl) prop-2-en-1-one (P1) and (E)-1-(2,4-dichlorophenyl)-3-(2,3,4-trimethoxyphenyl) prop-2-en-1-one (P13) did not show any significant activity (p < 0.05). Compound P2 was found to be devoid of electron deficient ring A (benzaldehyde ring). This suggests that, electron density on the rings are not determinants for antimalarial activity of the chalcone as proposed earlier and, present compound P2 as a candidate for further optimization and evaluation for prophylactic and suppressive activities.

References

World Health Organization. Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected tropical diseases 2015. World Health Organization; 2015.

Gallup JL and Sachs JD. The economic burden of malaria. Am J Trop Med Hyg. 2001; 64(1):85-96.

Rosenthal PJ. Falcipains and other cysteine proteases of malaria parasites. In Cysteine Proteases of Pathogenic Organisms. Springer, Boston, MA; 2011. 30-48 p.

Dondorp AM, Fairhurst RM, Slutsker L, MacArthur JR, Guerin PJ, Wellems TE, Ringwald P, Newman RD, Plowe CV. The threat of artemisinin-resistant malaria. N Eng J Med. 2011; 365(12):1073-1075.

Teixeira C, RB Gomes J, Gomes P. Falcipains, Plasmodium falciparum cysteine proteases as key drug targets against malaria. Curr Med Chem. 2011; 18(10):1555-1572.

Marco M and Coteron JM. Falcipain inhibition as a promising antimalarial target. Curr Top Med Chem. 2012;12(5):408-444.

Li R, Chen X, Gong B, Selzer PM, Li Z, Davidson E, Kurzban G, Miller RE, Nuzum EO, McKerrow JH, Fletterick RJ. Structure-based design of parasitic protease inhibitors. Bioorg Med Chem. 1996; 4(9):1421-1427.

Rosenthal PJ. Cysteine proteases of malaria parasites. Int J Parasitol. 2004; 34(13-14):1489-1499.

Sajid M and McKerrow JH. Cysteine proteases of parasitic organisms. Mol Biochem Parasitol. 2002; 120(1):1-21.

Li R, Kenyon GL, Cohen FE, Chen X, Gong B, Dominguez JN, Davidson E, Kurzban G, Miller RE, Nuzum EO, Rosenthal PJ. In vitro antimalarial activity of chalcones and their derivatives. J Med Chem. 1995; 38(26):5031-5037.

Chen M, Theander TG, Christensen SB, Hviid L, Zhai L, Kharazmi A. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob Agents Chemother. 1994; 38(7):1470-1475.

Bertoldo JB, Chiaradia-Delatorre LD, Mascarello A, Leal PC, Cordeiro MN, Nunes RJ, Sarduy ES, Rosenthal PJ, Terenzi H. Synthetic compounds from an in-house library as inhibitors of falcipain-2 from Plasmodium falciparum. J Enzy Inhib Med Chem. 2015; 30(2):299-307.

Ramírez–Prada J, Robledo SM, Vélez ID, del Pilar Crespo M, Quiroga J, Abonia R, Montoya A, Svetaz L, Zacchino S, Insuasty B. Synthesis of novel quinoline–based 4, 5– dihydro–1H–pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur J Med Chem. 2017; 131:237-254.

de Oliveira M, Cenzi G, Nunes R, Andrighetti C, de Sousa Valadão D, dos Reis C, Simões C, Nunes R, Júnior M, Taranto A, Sanchez B. Antimalarial activity of 4- metoxychalcones: Docking studies as falcipain/plasmepsin inhibitors, ADMET and lipophilic efficiency analysis to identify a putative oral lead candidate. Molecules. 2013; 18(12):15276-15287.

Ugwu DI, Ezema BE, Eze FU, Onoabedje EA, Ezema CG, Ekoh OC, Ayogu JI. Synthesis and Antimalarial Activities of Chalcone Derivatives. Chem Inform. 2015; 46(31):1966- 1984.

Mai CW, Yaeghoobi M, Abd-Rahman N, Kang YB, Pichika MR. Chalcones with electron-withdrawing and electron- donating substituents: anticancer activity against TRAIL resistant cancer cells, structure–activity relationship analysis and regulation of apoptotic proteins. Eur J Med Chem. 2014; 77:378-387.

Wilhelm A, Kendrekar P, Noreljaleel AE, Abay ET, Bonnet SL, Wiesner L, de Kock C, Swart KJ, van der Westhuizen JH. Syntheses and in vitro antiplasmodial activity of aminoalkylated chalcones and analogues. J Nat Prod. 2015; 78(8):1848-1858.

Sahu NK, Bari SB, Kohli DV. Molecular modeling studies of some substituted chalcone derivatives as cysteine protease inhibitors. Med Chem Res. 2012; 21(11):3835- 3847.

Dwivedi SD, Bharadwaj A, Ghuraiya A, Shrivastava A. Topological Investigation and Modeling of Antimalarial Activity of Chalcone. Int J Chem Tech Res. 2012; 4(2):662–8

Liu M, Wilairat P, Go ML. Antimalarial alkoxylated and hydroxylated chalones: structure− activity relationship analysis. J Med Chem. 2001; 44(25):4443-4452.

Liu M, Wilairat P, Croft SL, Tan AL, Go ML. Structure– activity relationships of antileishmanial and antimalarial chalcones. Bioorg and med chem. 2003; 11(13):2729-2738.

Go ML. Novel antiplasmodial agents. Med Res Rev. 2003; 23(4):456-487.

Kumar R, Mohanakrishnan D, Sharma A, Kaushik NK, Kalia K, Sinha AK, Sahal D. Reinvestigation of structure– activity relationship of methoxylated chalcones as antimalarials: Synthesis and evaluation of 2, 4, 5-trimethoxy substituted patterns as lead candidates derived from abundantly available natural β-asarone. Eur J Med Chem. 2010; 45(11):5292-301.

Adzu B, Haruna AK, Salawu OA, Katsayal UD, Njan A. In vivo antiplasmodial activity of ZS-2A: a fraction from chloroform extract of Zizyphus spina-christi root bark against Plasmodium bergheiberghei in mice. Int J Biol Chem Sci. 2007; 1(3):281-286.

Kalra BS, Chawla S, Gupta P, Valecha N. Screening of antimalarial drugs: An overview. Ind J Pharmacol. 2006; 38(1):5.

Ryley JF and Peters W. The antimalarial activity of some quinolone esters. Ann Trop Med Parasitol. 1970; 64(2):209- 222.

Saidu K, Onah J, Orisadipe A, Olusola A, Wambebe C, Gamaniel K. Antiplasmodial, analgesic, and anti- inflammatory activities of the aqueous extract of the stem bark of Erythrina senegalensis. J Ethnopharmacol. 2000; 71(1-2):275-280.

Iwalewa EO, Omisore NO, Adewunmi CO, Gbolade AA, Ademowo OG, Nneji C, Agboola OI, Daniyan OM. Anti- protozoan activities of Harunganamadagascariensis stem bark extract on trichomonads and malaria. Planta Med. 2007; 73(09):P 086.

Lipinski CA. Lead-and drug-like compounds: the rule-of- five revolution. Drug Discov Today Technol. 2004; 1(4):337-341.

Patil CB, Mahajan SK, Katti SA. Chalcone: A versatile molecule. Int J Pharm Sci Res. 2009; 1(3):11.

Sinha S, Medhi B, Sehgal R. Chalcones as an emerging lead molecule for antimalarial therapy: A review. J Mod Med Chem. 2013; 1:64-77.

Gomes M, Muratov E, Pereira M, Peixoto J, Rosseto L, Cravo P, Andrade C, Neves B. Chalcone derivatives: promising starting points for drug design. Molecules. 2017; 22(8):1210.

Crews P, Rodriquez J, Jaspars M, Crews RJ. Organic structure analysis. Oxford: Oxford University Press; 1998. 201 p.

Downloads

Published

2019-07-01

How to Cite

N. Hamza, A., Y. Idris, A., M. Musa, A., & B. Olorukooba, A. (2019). Design, Synthesis and Antimalarial Evaluation of New Trimethoxy Benzaldehyde Chalcones: doi.org/10.26538/tjnpr/v3i7.2. Tropical Journal of Natural Product Research (TJNPR), 3(7), 225–230. Retrieved from https://tjnpr.org/index.php/home/article/view/987