Antimalarial Activity of the Methanol Aerial Extract of Alysicarpus glumaceus (Vahl) DC. in Plasmodium berghei Infected Mice

doi.org/10.26538/tjnpr/v3i3.3

Authors

  • Amina B. Olorukoob Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria
  • Ferhat Khan Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria
  • Charles Madu Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria

Keywords:

Alysicarpus glumaceus, Antimalarial,, Acute toxicity,, Chemosuppression, Plasmodium berghei

Abstract

Medicinal plants are a potential source of affordable and effective drugs used in the treatment of many diseases. The plant Alysicarpus glumaceus has been used in traditional medicine for the treatment of many ailments including; thrush, sore, asthma, burn, and fever. The present study was designed to investigate the antimalarial activity of the methanol aerial extract of Alysicarpus glumaceus in Plasmodium berghei infected mice using suppressive, curative and prophylactic models. Phytochemical screening using standard procedures and acute toxicity studies via the oral route in mice were also conducted. Results from the phytochemical screening revealed the presence of glycosides, saponins, tannins, flavonoids, triterpenes, and alkaloids. The oral mean lethal dose (LD50) was estimated to be greater than 5,000 mg/kg in mice. The methanol aerial extract of Alysicarpus glumaceus at doses of 250, 500 and 1,000 mg/kg produced a significant (p<0.05) dose-dependentchemosuppression in the suppressive, curative and prophylactic tests respectively. There was a statistically significantly (p<0.05) prolongation of mean survival time in the extract treated mice in the curative study. The results of this investigation suggest that the methanol aerial extract of Alysicarpus glumaceus contains bioactive constituents with antimalarial activity

References

World Malaria Report 2018. Geneva: World Health Organization; 2018 Published 2018. https://www.who.int/malaria/publications/world-malariareport-2018/en/. Accessed December 22, 2018.

Mekonnen LB. In vivo antimalarial activity of the crude root and fruit extracts of Croton macrostachyus (Euphorbiaceae) against Plasmodium berghei infected mice, J Trad Complement Med. 2015; 5(2015):168-173.

Obey JK, Ngeiywa MM, Kiprono P, Omar S, von Wright A, Kauhanen J, Tikkanen-Kaukanen C. Antimalarial activity of Croton macrostachyus stem bark extracts. J Pathog. 2018;1:1-6

World Malaria Report 2016. Geneva: World Health Organization; 2016 http://www.who.int/malaria/publications/world-malariareport-2016/report/en/. Published in 2016. Accessed December 22, 2018.

Olasehinde GI, Ayanda OI, Egwari LO, Ajayi AA, Awofeso T. In vivo antiplasmodial activity of crude ethanolic and n-hexane extracts of Moringa oleifera leaves. Int J Agric Biol. 2016; 18(5):906‒910.

Alout H, Roche B, Dabiré RK, Cohuet A. Consequences of insecticide resistance on malaria transmission. PLoS Pathog. 2017; 13(9):3-7.

Ntie-Kang F, Onguéné PA, Lifongo LL, Ndom JC, Sippl W, Mbaze LM. The potential of anti-malarial compounds derived from African medicinal plants. Part II: a pharmacological evaluation of non-alkaloids and nonterpenoids. Malar J. 2014; 13(81):1-9.

Birru EM, Geta M, Gurmu AE. Antiplasmodial activity of Indigofera spicata root extract against Plasmodium berghei infection in mice. Malar J. 2017; 16(1):198-206.

Burkhill HM. The Useful Plants of West Tropical Africa. Volume 3, Royal Botanic Gardens, Kew, UK. 1985. 233 p.

Trease GE and Evans WC. Phytochemistry, In: Textbook of Pharmacognosy 13th Edition, Balliere, Tindall andCansell Ltd. London. 2002. 224-243 p.

Lorke D. A new approach to practical acute toxicity testing, Arch Toxicol. 1983; 54(4):275–287.

Kalra BS, Chawla S, Gupta P, Valecha N. Screening of antimalarial drugs: an overview,” Indian J Pharmacol. 2006; 38(1):5–12.

Peters W, Portus JH, Robinson BL. The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity. Ann Trop Med Parasitol. 1975; 69(2):155-71.

Ryley JF and Peters W. The antimalarial activity of some quinolone esters. Ann Trop Med Parasitol. 1970; 64(2):209- 222.

Peters W and Robinson BL. The chemotherapy of rodent malaria, XXII. XLVII. Studies on pyronaridine and other Mannich base antimalarials. Ann Trop Med Parasitol. 1992; 46(5):455- 465.

Cragg GM and Newman DJ. Natural products: A continuing source of novel drug leads. Bio et Biophy Acta. 2013; 1830(6):3670–3695.

Mengistie B, Makonnen E, Urga K. In vivo antimalarial activity of Dodonaea angustifolia seed extracts against Plasmodium berghei in mice model. Momona Ethiop J Sci. 2012; 5 (4) 47–63.

Mzena T, Swai H, Chacha M. Antimalarial activity of Cucumis metuliferus and Lippia kituiensis against Plasmodium berghei infection in mice. Res Rep Trop Med. 2018; 9(2018):81-88.

Trigg PI and Kondrachine AV. Global overview of malaria. Indian J Med Res. 1997; 106:39-52.

Peter IT and Anatoli VK. The current global malaria situation. Malaria parasite biology, pathogenesis, and protection, ASM Press, Washington, DC, USA. 1998. 11-22p.

Fentahun S, Makonnen E, Awas T, Giday M. In vivo antimalarial activity of crude extracts and solvent fractions of leaves of Strychnos mitis in Plasmodium berghei infected mice, BMC Complement Altern Med. 2017; 17(1):1-12.

Mbah CC, Akuodor GC, Anyalewechi NA, Iwuanyanwu TC, Osunkwo UA, In vivoantiplasmodial activities of aqueous extract of Bridelia ferruginea stem bark against Plasmodium berghei in mice, Pharma Biol. 2012; 50(2):188-194.

Olanlokun JO, David OM, Afolayan AJ. In vitro antiplasmodial activity and prophylactic potentials of extract and fractions of Trema orientalis (Linn.) stem bark. BMC Compl Altern Med. 2017; 17(1):407-419.

Adelekan AM, Prozesky EA, Hussein AA, Ureña LD, van Rooyen PH. Bioactive diterpenes and other constituents of Croton steenkampianus. J Nat Prod. 2008; 71(11):1919- 1922.

Chen Y, Li S, Sun F, Han H, Zhang X. In vivo antimalarial activities of glycoalkaloids isolated from Solanaceae plants. Pharm Biol. 2010; 48(9):1018-1024.

Walter NS, Bagai U, Kalia S. Antimalarial activity of Bergenia ciliata (Haw.) Sternb. against Plasmodium berghei, Parasitol Res. 2013; 112(9):3123-3128.

Barliana MI, Suradji EW, Abdulah R, Diantini A, Hatabu T. Antiplasmodial properties of kaempferol-3-O-rhamnoside

isolated from the leaves of Schima wallichii against chloroquine-resistant Plasmodium falciparum. Biomed Rep. 2014; 2(4):579-583

Downloads

Published

2019-03-01

How to Cite

B. Olorukoob, A., Khan, F., & Madu, C. (2019). Antimalarial Activity of the Methanol Aerial Extract of Alysicarpus glumaceus (Vahl) DC. in Plasmodium berghei Infected Mice: doi.org/10.26538/tjnpr/v3i3.3. Tropical Journal of Natural Product Research (TJNPR), 3(3), 80–84. Retrieved from https://tjnpr.org/index.php/home/article/view/901