Innovative Formulation of Solid Lipid Nanoparticle Loaded with Carrot Seed Essential Oil for Potential Antioxidant Activity and Sun Protection

Main Article Content

Arman Suryani
Azrul R. Affani
Berliana W. Safitri
Indah A. Azis
Muhammad F. E. Aldo
Hagia Sofia

Abstract

The discovery of natural sun protection and antioxidant agents is vital, but the low bioavailability of these ingredients often limits their use. This study aimed to formulate and characterize a serum containing SLN-CSEO-APs (solid lipid nanoparticle-carrot seed essential oil) with anti-aging and photoprotective properties to evaluate its antioxidant and sun protection effects. SLN was prepared using hot homogenization, heating lipids above their melting point, and dissolving the emulsifier in water. The physical characteristics, stability, antioxidant activity, and sun protection efficacy of the serum were evaluated. Antioxidant activity was assessed using DPPH and ABTS methods, while sun protection was measured by ultraviolet B (UVB) and ultraviolet A (UVA) protection. SLN-CSEO-APs serum showed a spherical morphology with a particle size of 257.12 nm ± 28.82, a polydispersity index of 0.50 PDI ± 0.00, and a zeta potential of -23.19 mV ± 0.81. The serum hydrogel had a pH within the physiological range for skin, with optimal viscosity, spreadability, and adhesion. Over time, serum stability decreased, as indicated by the reduction in all parameters. The serum demonstrated strong antioxidant potential, with IC50 values for ABTS and the positive control closely matched. Antioxidant activity was moderate, with values of 0.157 mg AAE/g dw for DPPH and 0.644 mg TE/g dw for ABTS. UVB protection was medium (13.549 ± 0.827), and UVA showed PA++ (4.202 ± 0.040). SLN-CSEO-APs serum provides significant antioxidant and sun protection, making it a promising skincare ingredient.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Innovative Formulation of Solid Lipid Nanoparticle Loaded with Carrot Seed Essential Oil for Potential Antioxidant Activity and Sun Protection. (2025). Tropical Journal of Natural Product Research , 9(12), 6239 – 6248. https://doi.org/10.26538/tjnpr/v9i12.43

References

1. Ngoc LTN, Tran VV, Moon JY, Chae M, Park D, Lee YC. Recent Trends of Sunscreen Cosmetic: An Update Review. Cosmetics. 2019;6(4):64. DOI:10.3390/cosmetics6040064

2. Ebrahimzadeh MA, Enayatifard R, Khalili M, Ghaffarloo M, Saeedi M, Charati JY. Correlation between Sun Protection Factor and Antioxidant Activity, Phenol and Flavonoid Contents of some Medicinal Plants. Iran J Pharm Res. 2014;13(3):1041-7.

3. Ansory HM, Sari EN, Nilawati A, Handayani S, Aznam N. Sunscreen and Antioxidant Potential of Myristicin in Nutmeg Essential Oils (Myristica fragrans). In: The Proceedings of the 2nd BTH-HSIC 2019. Atlantis Press; 2020. 138-142. DOI:10.2991/ahsr.k.200523.034

4. Hoang HT, Moon JY, Lee YC. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics. 2021;8(4):106. DOI:10.3390/cosmetics8040106

5. Reis-Mansur MCPP, Da Luz BG, Dos Santos EP. Consumer Behavior, Skin Phototype, Sunscreens, and Tools for Photoprotection: A Review. Cosmetics. 2023;10(2):39. DOI:10.3390/cosmetics10020039

6. Banik BK, Sahoo BM, Tiwari A. Terpenoids: Chemistry, Biochemistry, Medicinal Effects, Ethno-Pharmacology. 1st ed. CRC Press; 2022. 632. DOI:10.1201/9781003008682

7. Musnaini M, Fransisca S, Leslie W. Effectiveness Of Cream Formulation Of Carrot Seed Oil As Anti-Aging. Int J Health Pharm. 2022;3(3):331-340. DOI:10.51601/ijhp.v3i3.170

8. Chabib L, Hidayat AMUJ, Trianloka AMB, Pangestu MI, Suryani A, Yulianto. Therapeutic potential of Cymbopogon schoenanthus (L.) developed into nanoparticle technology. Pharm Educ. 2021;21(2):210-214. DOI:10.46542/pe.2021.212.210214

9. Chabib L, Suryani A, Hakim SNP, Rizki MI, Firmansyah F, Yulianto, Romadhonsyah F. Stevia rebaudiana as a nutraceutical for COVID-19 patients with no sugar diet during recovery and its nanoparticle application. Pharm Educ. 2022;22(2):174-179. DOI:10.46542/pe.2022.222.174179

10. Rizkita LD, Putri RGP, Farid M, Rizkawati M, Wikaningtyas P. Liposome drug delivery in combating the widespread topical antibiotic resistance: a narrative review. Beni-Suef Univ J Basic Appl Sci. 2024;13(1):90. DOI:10.1186/s43088-024-00545-2

11. Suryani A, Laksitorini MD, Sulaiman TNS. Ferrous fumarate nanoliposomes: Formulation, characterization, and diffusion profiles. J Appl Pharm Sci. 2024;14(5):157-165. DOI:10.7324/JAPS.2024.154580

12. Chabib L, Suryani A, Pangestu MI, Hidayat AMUJ, Trianloka AMB. The development of Origanum vulgare L. into nanoparticles in dosage forms. Pharm Educ. 2021;21(2):205-209. DOI:10.46542/pe.2021.212.205209

13. Chutoprapat R, Kopongpanich P, Chan LW. A Mini-Review on Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Topical Delivery of Phytochemicals for the Treatment of Acne Vulgaris. Molecules. 2022;27(11):3460. DOI:10.3390/molecules27113460

14. Satapathy MK, Yen TL, Jan JS, Tang RD, Wang JY, Taliyan R, Yang CH. Solid Lipid Nanoparticles (SLNs): An Advanced Drug Delivery System Targeting Brain through BBB. Pharmaceutics. 2021;13(8):1183. DOI:10.3390/pharmaceutics13081183

15. Subroto E, Andoyo R, Indiarto R. Solid Lipid Nanoparticles: Review of the Current Research on Encapsulation and Delivery Systems for Active and Antioxidant Compounds. Antioxidants. 2023;12(3):633. DOI:10.3390/antiox12030633

16. Sastri KT, Radha GV, Pidikiti S, Vajjhala P. Solid lipid nanoparticles: Preparation techniques, their characterization, and an update on recent studies. J app pharm sci. 2020;10(6):126-141. DOI:10.7324/JAPS.2020.10617

17. Amalia A, Jufri M, Anwar E. Preparasi dan Karakterisasi Sediaan Solid Lipid Nanoparticle (SLN) Gliklazid. J Ilmu Kefarm Indone. 2015;13(1): 108-114.

18. Anggraeni W, Al-Hakim NA, Maharani NI. Evaluation of Sunflower Seed Oil Emulgel with Carbopol 940: Physical Properties and Moisturizing Effectiveness. Indones J Pharm Educ. 2025; 5 (1):12 -26. DOI: 10.37311/ijpe.v5i1.29584

19. Chabib L, Suryani A, Munawiroh SZ, Mariyam S, Nafiah Z, Laksitorini MD. Enhancing The Physical Characteristics And Shelf Life Of Rice Water (Oryza sativa L.) Gel Shampoo: The Role Of Propylene Glycol Concentration. Int J App Pharm. 2024:364-370. DOI:10.22159/ijap.2024v16i2.49766

20. Suryani A, Chabib L, Fitria A, Nurlina S, Kartika ER. Peppermint essential oil nanoliposomes: Innovative formulation for effective hair growth. J Appl Pharm Sci. 2025;15(6):178-189. DOI:10.7324/JAPS.2025.207281

21. Chabib L, Ar Rodli FH, Nugroho BH, Suryani A, Firmansyah F. Development of nanoliposome formulation of beta-carotene using high speed homogeniser method. Pharm Educ. 2024;24(2):1-8. DOI:10.46542/pe.2024.242.18

22. Chabib L, Suryani A, Dewi LS, Noviani H, Maharani WHP, Indraswari AA. Pineapple fruit extract (Ananas comosus L. Merr) as an antioxidant and anti-acne agent made with the nano-emulsion gel delivery system. Pharm Educ. 2023;23(2):126-132. DOI:10.46542/pe.2023.232.126132

23. Chabib L, Suryani A, Noviani H, Werdyani S. Biosynthesis of gold nanoparticles from pineapple bromelain isolate as antioxidant. In: Proceedings of the 4th IC3PE; AIP Publishing. 2024:020019. DOI:10.1063/5.0205319

24. Adela N, Sari UK, Karim DDA, Ratnasari D. Formulation and Antioxidant Activity Test of Phycocyanin Phytosomal Gel from Green Algae Extract (Spirulina platensis). Aisyah J Ilmu Kesehat. 2024;9(1):483-497. DOI: 10.30604/jika.v9i1.2766

25. Chabib L, Hartanto, Syukri Y, Suryani A. Cashew leaf extract gel as antibacterial with CMC-Na as gelling agent. In: Proceedings of the 4th IC3PE; AIP Publishing. 2024:020018. DOI:10.1063/5.0205318

26. Ningrat AWS. Formulation and Testing of Emulgel Preparations from Purified Fraction of Papaya (Carica papaya L.) Leaves as Anti-Acne. J Ilmfar Akfar Jember. 2024;7(1):36-43. DOI:10.53864/jifakfar.v7i1.166

27. Arief MOV, Lieanto C, Sabani JM, Purwanto. Green Tea Dregs (Camellia sinensis (L.) Extraction Method Effect on Cutibacterium acnes and Development of Spot Cream. J Farmasi Ilmu Kefarm Indone. 2023;10(3):386-394. DOI:10.20473/jfiki.v10i32023.386-394

28. Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, Chang CM. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules. 2022;27(4):1326. DOI:10.3390/molecules27041326

29. Laaraj S, Choubbane H, Elrherabi A, Tikent A, Farihi A, Laaroussi A, Bouhrim M, Shahat AA, Noutfia Y, Herqash RN, Chigr F, Salmaoui S, Elfazazi K. Influence of Harvesting Stage on Phytochemical Composition, Antioxidant, and Antidiabetic Activity of Immature Ceratonia siliqua L. Pulp from Béni Mellal-Khénifra Region, Morocco: In Silico, In Vitro, and In Vivo Approaches. Curr Issues Mol Biol. 2024;46(10):10991-11020. DOI:10.3390/cimb46100653

30. Cefali LC, Ataide JA, Fernandes AR, Sanchez-Lopez E, Sousa IMdO, Figueiredo MC, Ruiz ALTG, Foglio MA, Mazzola PG, Souto EB. Evaluation of In Vitro Solar Protection Factor (SPF), Antioxidant Activity, and Cell Viability of Mixed Vegetable Extracts from Dirmophandra mollis Benth, Ginkgo biloba L., Ruta graveolens L., and Vitis vinífera L. Plants. 2019;8(11):453. DOI:10.3390/plants8110453

31. Pandey S, Shaikh F, Gupta A, Tripathi P, Yadav JS. A Recent Update: Solid Lipid Nanoparticles for Effective Drug Delivery. Adv Pharm Bull. 2021;12(1):17-33. DOI:10.34172/apb.2022.007

32. Musielak E, Feliczak-Guzik A, Nowak I. Optimization of the Conditions of Solid Lipid Nanoparticles (SLN) Synthesis. Molecules. 2022;27(7):2202. DOI:10.3390/molecules27072202

33. Punu G, Harahap Y, Anjani QK, Hartrianti P, Donnely RF, Ramadon D. Solid Lipid Nanoparticles (SLN): Formulation and Fabrication. Pharm Sci Res. 2023;10(2):55-66. DOI:10.7454/psr.v10i2.1313

34. Duong VA, Nguyen TTL, Maeng HJ. Preparation of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Drug Delivery and the Effects of Preparation Parameters of Solvent Injection Method. Molecules. 2020;25(20):4781. DOI:10.3390/molecules25204781

35. Danaei M, Dehghankhold M, Ataei S, Davarani FH, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics. 2018;10(2):57. DOI:10.3390/pharmaceutics10020057

36. Németh Z, Csóka I, Semnani Jazani R, Sipos B, Haspel H, Kozma G, Konya Z, Gabriella Dobo D. Quality by Design-Driven Zeta Potential Optimisation Study of Liposomes with Charge Imparting Membrane Additives. Pharmaceutics. 2022;14(9):1798. DOI:10.3390/pharmaceutics14091798

37. Yuan Z, Yan R, Fu Z, Wu T, Ren C. Impact of physicochemical properties on biological effects of lipid nanoparticles: Are they completely safe. Sci Total Environ. 2024;927:172240. DOI:10.1016/j.scitotenv.2024.172240

38. Taylor EN, Kummer KM, Dyondi D, Webster TJ, Banerjee R. Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids. Nanoscale. 2014;6(2):825-832. DOI:10.1039/C3NR04270G

39. Lukić M, Pantelić I, Savić SD. Towards Optimal pH of the Skin and Topical Formulations: From the Current State of the Art to Tailored Products. Cosmetics. 2021;8(3):69. DOI:10.3390/cosmetics8030069

40. Permadi A, Aziz A, Ramadani N, Nazzal S, Maryudi M, Suharto TE. Evaluation and Comparison Anti-aging Facial Serum from Algae Extract. CHEMICA J Tek Kim. 2024;10(3):144. DOI:10.26555/chemica.v10i3.27898

41. Zakzak K, Semenescu AD, Moacă EA, Predescu I, Draghici G, Vlaia L, Vlaia V, Borcan F, Dhelean CA. Comprehensive Biosafety Profile of Carbomer-Based Hydrogel Formulations Incorporating Phosphorus Derivatives. Gels. 2024;10(7):477. DOI:10.3390/gels10070477

42. Salvioni L, Morelli L, Ochoa E, Lobra M, Fiandra L, Palugan L, Prosperi D, Colombo M. The emerging role of nanotechnology in skincare. Adv Colloid Interface Sci. 2021;293:102437. DOI:10.1016/j.cis.2021.102437

43. Wang C, Zhang X, Fan Y, Yu S, Liu M, Feng L, Sun Q, Pan P. Principles and Design of Bionic Hydrogel Adhesives for Skin Wound Treatment. Polymers. 2024;16(13):1937. DOI:10.3390/polym16131937

44. Schröder A, Sprakel J, Schroën K, Spaen JN, Berton-Carabin CC. Coalescence stability of Pickering emulsions produced with lipid particles: A microfluidic study. J Food Eng. 2018;234:63-72. DOI:10.1016/j.jfoodeng.2018.04.007

45. Akanda M, Mithu MSH, Douroumis D. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment. J Drug Deliv Sci Technol. 2023;86:104709. DOI:10.1016/j.jddst.2023.104709

46. Gulcin İ, Alwasel SH. DPPH Radical Scavenging Assay. Processes. 2023;11(8):2248. DOI:10.3390/pr11082248

47. Fawwaz M, Pratama M, Musafira M, Wahab I, Iriani R, Aminah A, Kusuma AT, Asrul MI. Evaluation of Antioxidant Activity of Vernonia amygdalina Leaves and Its Flavonoid-Phenolic Content. Indones J Pharm Sci Technol. 2023;10(2):104. DOI:10.24198/ijpst.v10i2.41617

48. Muadifah A, Tilarso DP, Putri AE, Sowe MS. Antioxidant Effectiveness Test of Kapok Leaf Extract Moisturizer (Ceiba Pentandra L. Gaertn.) with DPPH Method. Chempublish. 2024;8(1):1-10. DOI:10.22437/chp.v8i1.33234

49. Budaraga IK, Putra DP. Analysis Antioxidant IC50 Liquid Smoke of Cocoa Skin with Several Purification Methods. IOP Conf Ser: Earth Environ Sci. 2021;757(1):012053. DOI:10.1088/1755-1315/757/1/012053

50. Kusumorini N, Nugroho AK, Pramono S, Martien R. Determination of The Potential Antioxidant Activity of Isolated Piperine from White Pepper Using DPPH, ABTS, and FRAP Methods. Maj Farmaseutik. 2022;18(4):454. DOI:10.22146/farmaseutik.v18i4.70246

51. Suryani A, Shafira Istiqhfarin HA, Hidayah N, Nitisara NN, Aryanti AM, Ardana R, Kartika ER. Synergistic modification of polyvinyl alcohol and natural phospholipids: Nanoliposomal carrier for Sonneratia caseolaris L. delivery and therapeutic care. J Appl Pharm Sci. 2025;15(12):251-265. DOI: 10.7324/JAPS.2025.243159

52. Minarti M, Ariani N, Megawati M, Hidayat A, Hendra M, Primahana G, Darmawan A. Potential Antioxidant Activity Methods DPPH, ABTS, FRAP, Total Phenol and Total Flavonoid Levels of Macaranga hypoleuca (Reichb. f. & Zoll.) Leaves Extract and Fractions. E3S Web Conf. 2024;503:07005. DOI:10.1051/e3sconf/202450307005

53. Gulcin İ. Antioxidants: a comprehensive review. Arch Toxicol. 2025;99(5):1893-1997. DOI:10.1007/s00204-025-03997-2

54. Lee KJ, Oh YC, Cho WK, Ma JY. Antioxidant and Anti-Inflammatory Activity Determination of One Hundred Kinds of Pure Chemical Compounds Using Offline and Online Screening HPLC Assay. Evid Based Complement Alternat Med. 2015;2015:1-13. DOI:10.1155/2015/165457

55. Hoang HT, Moon JY, Lee YC. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics. 2021;8(4):106. DOI:10.3390/cosmetics8040106

56. Leja M, Kamińska I, Kramer M, Maksylewicz-Kaul A, Kammerer D, Carle R, Baranski R. The Content of Phenolic Compounds and Radical Scavenging Activity Varies with Carrot Origin and Root Color. Plant Foods Hum Nutr. 2013;68(2):163-170. DOI:10.1007/s11130-013-0351-3

57. Al-Snafi PDAE. Nutritional and therapeutic importance of Daucus carota- A review. IOSR J Pharm. 2017;07(02):72-88. DOI:10.9790/3013-0702017288

58. Musnaini M, Fransisca S, Leslie W. Effectiveness Of Cream Formulation Of Carrot Seed Oil As Anti-Aging. Int J Health Pharm. 2022;3(3):331-340. DOI:10.51601/ijhp.v3i3.170

59. Dutra EA, Oliveira DAG da C, Kedor-Hackmann ERM, Santoro MIRM. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Rev Bras Cienc Farm. 2004;40(3):381-385. DOI:10.1590/S1516-93322004000300014

60. Hamidah AH, Maghfira MN, Tjitraresmi A. The Potency of Natural Carotenoids as a UV-Skin Protection and Sunburn Prevention: Review. Int J Pharm Sci Rev Res. 2023;82(2):153-161. DOI:10.47583/ijpsrr.2023.v82i02.022

61. Anbualakan K, Tajul Urus NQ, Makpol S, Jamil A, Ramli ESM, Md Pauzi SH, Mohammad N. A Scoping Review on the Effects of Carotenoids and Flavonoids on Skin Damage Due to Ultraviolet Radiation. Nutrients. 2022;15(1):92. DOI:10.3390/nu15010092