Coenzyme Q10 Mitigated Hepatocellular Damage in Fructose-Fed Streptozotocin-Induced Diabetic Rats via Regulating mRNA Expression of GSK-3β, GLUT-2 and Inflammatory Genes

Authors

  • Akinwunmi O. Adeoye INICSA, Enrique Barros Pabellón Biología Celular, Ciudad Universitaria, X5000, Córdoba, Argentina
  • Jude Akinyelu Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
  • Daniela J. Porta INICSA, Enrique Barros Pabellón Biología Celular, Ciudad Universitaria, X5000, Córdoba, Argentina
  • John A. Faode Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
  • María A. Rivoira INICSA, Enrique Barros Pabellón Biología Celular, Ciudad Universitaria, X5000, Córdoba, Argentina
  • Néstor H. Garcia INICSA, Enrique Barros Pabellón Biología Celular, Ciudad Universitaria, X5000, Córdoba, Argentina

DOI:

https://doi.org/10.26538/tjnpr/v9i8.40

Keywords:

Inflammatory genes, GLUT-2, GSK-3β, Hyperglycemia, Coenzyme Q10

Abstract

Coenzyme Q10 (CoQ10) has been examined in several diabetic and/or insulin-resistant models; however, a thorough explanation of its precise mechanisms is still lacking. This study investigated the protective effect of CoQ10 in fructose-fed streptozotocin-induced diabetic rats via redox regulation and modulation of some key pathways. Male Wistar rats were pre-fed with 20% (w/v) fructose water for one week and thereafter injected with streptozotocin intraperitoneal. The animals were treated with CoQ10 for two weeks after confirmation of diabetes. Thereafter, they were euthanized, blood and liver samples were collected for biochemical and histopathological studies.  Glycemic indices, carbohydrate metabolizing enzymes (both in vitro and in vivo), liver biomarkers, oxidative stress and inflammatory markers, and redox status were investigated. The mRNA expression level of GSK-3β, GLUT-2, and some inflammatory genes was also assessed. The results revealed that CoQ10 significantly modulates the glycemic indices, carbohydrate metabolizing enzymes, and mitigates the detrimental effect of the STZ-induced diabetes in the liver by lowering the concentrations of the oxidative stress markers and improving the activity of the endogenous antioxidant enzymes and the concentration of the anti-inflammatory cytokine. Administration of CoQ10 downregulated GSK-3β, TNF-α, and NF-kB mRNA expression levels, and upregulated GLUT-2 and IL-10 mRNA expression levels. CoQ10 protected the hepatic tissue from hyperglycemia and oxidative stress resulting from STZ-induced diabetes and also modulated the expression of genes implicated in the insulin signaling pathway. CoQ10 protects by alleviating the impairment of insulin signaling in diabetic rats and could be an effective therapeutic agent for the management of diabetes.

Author Biography

  • Akinwunmi O. Adeoye, INICSA, Enrique Barros Pabellón Biología Celular, Ciudad Universitaria, X5000, Córdoba, Argentina

    Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria

References

1. Dowarah J, Singh VP. Anti-diabetic drugs: recent approaches and advancements. Bioorg Med Chem. 2020; 28:1152-1163. Doi:10.1016/j.bmc.2019.115263

2. Khan MA, Hashim MJ, King JK, Govender RD, Mustafa H, Al-Kaabi J. Epidemiology of type-2 diabetes: Global burden of Disease and forecasted trends. J Epidemiol Glob Health. 2020; 10(1):107-111. Doi: 10.2991/jegh.k.191028.001

3. Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, BB. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022; 183: 109-119. Doi: 10.1016/j.diabres.2021.109119

4. International Diabetes Federation. IDF diabetes atlas. (2022). Accessed 23 February 2022. https://diabetesatlas.org/2022-reports.

5. Zhu Y, Wang H, Guo Y, Cao J, & Li H. Advances in the Therapeutic Potential of Inhibitors Targeting Glycogen Synthase Kinase 3 in Inflammatory Diseases. Mini Rev Med Chem. 2023; 23(19):1893-1904. Doi: 10.2174/1389557523666230412083123

6. Wang L, Li J, & Di LJ. Glycogen synthesis and beyond: a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev. 2022; 42(2):946-982. Doi: 10.1002/med.21867

7. Zhang C, Gu L, Xie H, Liu Y, Huang P, Zhang J, Luo D, & Zhang J. Glucose transport, transporters, and metabolism in diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis. 2023; 1870(3):166995. Doi: 10.1016/j.bbadis.2023.166995

8. Nakhleh A, Shehadeh N. Hypoglycemia in diabetes: An update on pathophysiology, treatment, and prevention. World J. diabetes. 2021; 12(12):2036-2049. Doi: 10.4239/wjd.v12.i12.2036

9. Heurtebize MA, Faillie JL. Drug-induced hyperglycemia and diabetes. Therapie. 2024; 79(2):221-238. Doi: 10.1016/j.therap.2023.09.010

10. Gilbert MP, & Pratley RE. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: review of head-to-head clinical trials. Front endocrinol. 2020; 11:178. Doi: 10.3389/fendo.2020.00178

11. Kirkman DL, Stock JM, Shenouda N, Bohmke NJ, Kim Y, Kidd J, Townsend RR, Edwards DG. Effects of a mitochondrial-targeted ubiquinol on vascular function and exercise capacity in chronic kidney disease: a randomized controlled pilot study. Am. J. Physiol Renal Physiol. 2023; 325(4):F448-456. Doi: 10.1152/ajprenal.00067.2023

12. Adeoye AO, Olanlokun JO, Porta DJ, Akinyelu JO, Rivoira MA, & Garcia NH. Antioxidative potential and activity of potassium polyacrylate and coenzyme Q10 on rat hepatic mitochondrial permeability transition pores. Arch. Razi Inst. 2024; 79(4):805-814. Doi: 10.32592/ARI.2024.79.4.805

13. Hargreaves I, Heaton RA, Mantle D. Disorders of human coenzyme Q10 metabolism: an overview. Int J Mol Sci. 2020; 21(18):6695. Doi: 10.3390/ijms21186695

14. Calò LA, Rigato M, Bertoldi G. ACE2/Angiotensin 1-7 protective anti-inflammatory and antioxidant role in hyperoxic lung injury: Support from studies in Bartter’s and Gitelman’s syndromes. QJM: An Int J. Med. 2020; 113(6):440-441. Doi: 10.1093/qjmed/hcz319

15. Keskin E, Uluışık D, Öznurlu Y, Özaydın T. Effects of coenzyme Q10 on some blood antioxidant system parameters and histological changes in the pancreas and aorta of streptozotocin-induced diabetic rats. Kocatepe Vet J. 2020; 13(2):192-202. Doi: 10.30607/kvj.702306

16. Pastor-Maldonado CJ, Suárez-Rivero JM, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Munuera-Cabeza M, Suárez-Carrillo A, Talaverón-Rey M, Sánchez-Alcázar JA. Coenzyme Q10: novel formulations and medical trends. Int J Mol Sci. 2020; 21(22):8432. Doi: 10.3390/ijms21228432

17. Alarcón-Vieco E, Martínez-García I, Sequí-Domínguez I, Rodríguez-Gutiérrez E, Moreno-Herráiz N, Pascual-Morena C. Effect of coenzyme Q10 on cardiac function and survival in heart failure: an overview of systematic reviews and meta-analyses. Food Funct. 2023; 14(14):6302-6311. Doi: 10.1039/d3fo01255g

18. Maruhashi T, Higashi Y. Pathophysiological association between diabetes mellitus and endothelial dysfunction. Antioxidants (Basel). 2021; 10(8):1306. Doi: 10.3390/antiox10081306

19. Quaile MP, Melich DH, Jordan HL, Nold JB, Chism JP, Polli JW, Smith GA, Rhodes MC. (2010). Toxicol. Appl Pharmacol. 2010; 243(3):340-347. Doi: 10.1016/j.taap.2009.11.026

20. Wilson RD, Islam MS. Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes. Pharmacol Rep. 2012; 84(1):128-139. Doi: 10.1016/s1734-1140(12)70739-9

21. Tietz NW. Clinical guide to laboratory tests. In Clinical guide to laboratory tests. 1995; 1096-1096.

22. Passonneau JV, & Lauderdale VR. (1974). A comparison of three methods of glycogen measurement in tissues. Anal Biochem. 1974; 60(2):405-412. Doi: 10.1016/0003-2697(74)90248-6

23. Worthington Biochemical Corp. Worthington enzyme and related biochemicals. Freehold, NJ. Handbook of Biochemistry: 1978; Section A Proteins, 1.

24. Apostolidis E, Kwon YI, & Shetty K. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Inno Food Sci Emerg. Technol. 2007; 8(1):46-54. Doi: 10.1016/j.ifset.2006.06.001

25. Doumas BT, Perry BW, Sasse EA, & Straumfjord JV. Standardization in bilirubin assays: evaluation of selected methods and stability of bilirubin solutions. Clin Chem. 1973; 19(9):984-993. Doi: 10.1093/clinchem/19.9.984

26. Reitman, S., & Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957; 28(1):56-63. Doi: 10.1093/ajcp/28.1.56

27. Wright PJ, Plummer DT, Leathwood PT. Enzyme in rat urine. Alkaline Phosphatase Enzymol. 1972; 42:317-327.

28. Levine R.L, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, & Stadtman, ER. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990; 186:464-478. Doi: 10.1016/0076-6879(90)86141-h

29. Nelson WG, De Marzo AM, DeWeeSe TL, & Isaacs WB. The role of inflammation in the pathogenesis of prostate cancer. J Urol. 2004; 172(5):S6-S12. Doi: 10.1097/01.ju.0000142058.99614.ff

30. Gornall AG, Bardawill CJ, & David MM. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949; 177(2):751-766. Doi.org/10.1016/S0021-9258(18)57021-6

31. Misra HP, & Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972; 247(10):3170-3175. Doi.org/10.1016/S0021-9258(19)45228-9

32. Beers, RF., & Sizer, IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem, 1952; 195(1):133-140. Doi.org/10.1016/S0021-9258(19)50881-X

33. Ellman, GL. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959; 82(1):70-77. Doi: 10.1016/0003-9861(59)90090-6

34. Ortiz G, Chao C, Jamali A, Seyed-Razavi Y, Kenyon B, Harris DL, & Hamrah P. Effect of Dry Eye Disease on the Kinetics of Lacrimal Gland Dendritic Cells as Visualized by Intravital Multi-Photon Microscopy. Front Immunol. 2020; 11:1713. Doi: 10.3389/fimmu.2020.01713

35. Elekofehinti OO, Onunkun AT, Olaleye MT. Cymbopogon citratus (DC.) Stapf mitigates ER-stress induced by streptozotocin in rats via down-regulation of GRP78 and up-regulation of Nrf2 signaling. J. Ethnopharmacol. 2020; 262:113-130. Doi: 10.1016/j.jep.2020.113130

36. Daniel OO, Adeoye AO, Ojowu J, & Olorunsogo OO. (2018). Inhibition of liver mitochondrial membrane permeability transition pore opening by quercetin and vitamin E in streptozotocin-induced diabetic rats. Biochem Biophys Res. Commun. 2018; 504(2):460-469. Doi: 10.1016/j.bbrc.2018.08.114

37. Bharti SK, Krishnan S, Kumar A, Kumar A. Antidiabetic phytoconstituents and their mode of action on metabolic pathways. Ther Adv Endocrinol Metab. 2018; 9:81-100. Doi: 10.1177/2042018818755019

38. Martelli A, Testai L, Colletti A, Cicero AF. Coenzyme Q10: Clinical applications in cardiovascular diseases. Antioxidants (Basel). 2020; 9(4):341. Doi: 10.3390/antiox9040341

39. Adeoye AO, Porta DJ, Rivoira MA, & Garcia NH. Pharmacoinformatics studies of coenzyme Q10 and potassium polyacrylate on angiotensin-converting enzyme associated with hypertension. J Biomol. Struct Dyn, 2024; 42(19) 9949-9960. Doi: 10.1080/07391102.2023.2254395

40. Mantle D. Coenzyme Q10 supplementation for diabetes and its complications: an overview Br J Diabetes. 2017; 17:145-148. Doi: 10.15277/bjd.2017.149

41. Gutierrez-Mariscal FM, de la Cruz-Ares S, Torres-Peña JD, Alcalá-Diaz JF, Yubero-Serrano EM, López-Miranda J. Coenzyme Q10 and cardiovascular diseases. Antioxidants (Basel). 2021; 10(6):906. Doi: 10.3390/antiox10060906

42. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines (Basel). 2018; 5:93. Doi: 10.3390/medicines5030093

43. Xia J, Li X, Bai C, Han X. Research Progress of Coenzyme Q in Diabetes Mellitus and Its Common Complications. Diabetes Metab Syndr Obes. 2024; 3629-3641. Doi: 10.2147/DMSO.S481690

44. Sadi G, Şahin G, Bostancı A. Modulation of renal insulin signaling pathway and antioxidant enzymes with diabetes: Effects of resveratrol. Medicina (Kaunas). 2018; 55(1): E3. Doi: 10.3390/medicina55010003

45. Samimi F, Namiranian N, Sharifi-Rigi A, Siri M, Abazari O, Dastghaib S. Coenzyme Q10: A Key Antioxidant in the Management of Diabetes‐Induced Cardiovascular Complications—An Overview of Mechanisms and Clinical Evidence. Int J Endocrinol. 2024; 2024(1):2247748. Doi: 10.1155/2024/2247748

46. Sarkar P, Nath K, Banu S. Modulatory effect of baicalein on gene expression and activity of antioxidant enzymes in streptozotocin-nicotinamide induced diabetic rats. Braz. J. Pharm. Sci. 2019; 55: e18201. Doi: 10.1590/s2175-97902019000118201

47. Barbato V, Talevi R, Braun S, Merolla A, Sudhakaran S, Longobardi S, Gualtieri R. Supplementation of sperm media with zinc, D-aspartate and co-enzyme Q10 protects bull sperm against exogenous oxidative stress and improves their ability to support embryo development. Zygote. 2017; 25(2):168-175. Doi: 10.1017/S0967199416000459

48. Marrocco, I., Altieri, F., Peluso, I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxid Med Cell Longev. 2017; 65010-65046. Doi: 10.1155/2017/6501046

49. Jorat MV, Tabrizi R, Kolahdooz F, Akbari M, Salami M, Heydari ST, Asemi Z. The effects of coenzyme Q10 supplementation on biomarkers of inflammation and oxidative stress in among coronary artery disease: A systematic review and meta-analysis of randomized controlled trials. Inflammo Pharmacol. 2019: 27:233–248. Doi: 10.1007/s10787-019-00572-x

50. Dludla PV, Orlando P, Silvestri S, Marcheggiani F, Cirilli I, Nyambuya TM, Mxinwa V, Mokgalaboni K, Nkambule BB, Johnson R, Mazibuko-Mbeje SE. Coenzyme Q10 supplementation improves adipokine levels and alleviates inflammation and lipid peroxidation in conditions of metabolic syndrome: A meta-analysis of randomized controlled trials. Int J Mol Sci. 2020; 21(9):3247. Doi: 10.3390/ijms21093247

51. García-Ropero Á, Vargas-Delgado AP, Santos-Gallego CG, & Badimon JJ. Inhibition of sodium glucose cotransporters improves cardiac performance. Int J Mol Sci. 2019; 20(13):3289. Doi: 10.3390/ijms20133289

52. Ramasubbu K, Devi Rajeswari V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Mol Cell Biochem. 2023; 478(6):1307-1324. Doi: 10.1007/s11010-022-04587-x

53. Sharma, A., Lee-Ødegård, S., Qvigstad, E., Sommer, C., Sattar, N., Gill, J. M., & Birkeland, KI. (2022). β-cell function, hepatic insulin clearance, and insulin sensitivity in south asian and nordic women after gestational diabetes mellitus. Diabetes 2022; 71(12):2530-2538. Doi: 10.2337/db22-0622

54. Farsi F, Ebrahimi-Daryani N, Golab F, Akbari A, Janani L, Karimi MY, Irandoost P, Alamdari NM, Agah S, Vafa M. A randomized controlled trial on the coloprotective effect of coenzyme Q10 on immune-inflammatory cytokines, oxidative status, antimicrobial peptides, and microRNA-146a expression in patients with mild-to-moderate ulcerative colitis. Eur J Nutr. 2021; 60:3397-3410. Doi: 10.1007/s00394-021-02514-2

55. Garcia-Jacobo RE, Bergamin LS, Vultaggio-Poma V, Thorstenberg ML, Tarantini M, García-Hernández MH, & Di Virgilio F. The purinergic landscape of type 2 diabetes mellitus. Molecules. 2022; 27(6):1838. Doi: 10.3390/molecules27061838

Downloads

Published

2025-08-31

How to Cite

Coenzyme Q10 Mitigated Hepatocellular Damage in Fructose-Fed Streptozotocin-Induced Diabetic Rats via Regulating mRNA Expression of GSK-3β, GLUT-2 and Inflammatory Genes. (2025). Tropical Journal of Natural Product Research , 9(8), 3802 – 3814. https://doi.org/10.26538/tjnpr/v9i8.40