UV-Vis Spectroscopic and Chemometric Analyses for SPF Prediction: Evaluating the Sun Protection Potential of Acacia Leaves Extracts from Different Species, Locations, and Solvent Extractions

Main Article Content

Liling Triyasmono
Dihan Nur Afna
Rizky Melinda Sari
Dinda Putri Hikmatus Sajidah
Normaidah Sajidah

Abstract

In recent years, there has been growing interest in the use of plant-based ingredients as natural sunscreen agents. This study aimed to investigate the Sun Protection potential of Acacia extracts using UV-Vis spectroscopy combined with chemometric analysis. Extracts from two Acacia species (Mangium and Auri), sourced from two different locations (BATOLA and BJB), were prepared using ethanol (96%), ethyl acetate, and n-hexane as extraction solvents. The sun protection potential of the extracts was evaluated by determining the sun protection factor (SPF) using UV-Vis spectrophotometric method, followed by chemomimetric analysis. The results showed that the polarity of the solvent for extraction, the species of plants, and the geographical origin significantly influenced SPF values and the extraction of UV-absorbing bioactive compounds. Ethyl acetate extracts showed the highest SPF values (25.43-33.44), particularly in Mangium BJB (31.84) and Auri BJB (30.57), suggesting a greater photoprotective potential. Principal component analysis (PCA) successfully differentiated extracts, while Partial Least Square (PLS) regression (R² > 0.99) accurately predicted SPF values, validating the reliability of chemometric models for SPF estimation. This study showed that UV-Vis spectroscopy, combined with chemometric modelling, provided a rapid, accurate and non-invasive method to evaluate plant-based sunscreen ingredients, thereby supporting the development of natural and sustainable photoprotective products. Moreover, future studies should focus on compound identification (LC-MS), in vivo SPF validation, and development of sunscreen formulations to improve ecofriendly UV protection strategies.

Downloads

Download data is not yet available.

Article Details

Section

Articles

Author Biography

Liling Triyasmono, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Banjarbaru, Indonesia

Integrated Laboratory, Lambung Mangkurat University, Banjarbaru, Indonesia

How to Cite

UV-Vis Spectroscopic and Chemometric Analyses for SPF Prediction: Evaluating the Sun Protection Potential of Acacia Leaves Extracts from Different Species, Locations, and Solvent Extractions. (2025). Tropical Journal of Natural Product Research , 9(8), 3854 – 3859. https://doi.org/10.26538/tjnpr/v9i8.46

References

⦁ Raymond-Lezman JR and Riskin SI. Benefits and Risks of Sun Exposure to Maintain Adequate Vitamin D Levels. Cureus. 2023; 5:15(5):e38578.Doi: ⦁ 10.7759/cureus.38578 DOI: https://doi.org/10.7759/cureus.38578

⦁ Vivek PC, Devarshi A, Vivek H, Shilpa D, Lalitkumar KV. Sunscreens: A comprehensive review with the application of nanotechnology. J Drug Deliv Sci Technol. 2023; 86:104720. Doi:⦁ 10.1016/j.jddst.2023.104720 DOI: https://doi.org/10.1016/j.jddst.2023.104720

⦁ He H, Li A, Li S, Tang J, Li L, Xiong L. Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomed Pharmacother. 2021; 134:111161. Doi: ⦁ 10.1016/j.biopha.2020.111161 DOI: https://doi.org/10.1016/j.biopha.2020.111161

⦁ Muslimin L, Zainal TH, Hardianti B, Megawati M, Marwati M. Effect of Solvent Extraction on Antityrosinase and Sun Protection Factor of Mulberry (Morus Alba L.) Cultivated in Wajo, Indonesia. Trop J Nat Prod Res. 2023; 7(6):3114-3118. Doi: 10.26538 Tjnpr V7i6.7 DOI: https://doi.org/10.26538/tjnpr/v7i6.7

⦁ Prayogo YH, Syafii W, Sari RK, Batubara I, Danu. Pharmacological activity and phytochemical profile of acacia heartwood extracts. Sci Pharm. 2021; 89(3):37 Doi:⦁ 10.3390/scipharm89030037 DOI: https://doi.org/10.3390/scipharm89030037

⦁ Jalloul A, Chaar H, Tounsi MS, Abderrabba M. Variations in phenolic composition and antioxidant activities of Scabiosa maritima (Scabiosa atropurpurea sub. maritima L.) crude extracts and fractions according to growth stage and plant part. S Afr J Bot. 2022; 146:703-714. Doi:⦁ 10.1016/j.sajb.2021.12.004 DOI: https://doi.org/10.1016/j.sajb.2021.12.004

⦁ Sasongko H, Advaita N, Lestari LG, Aidid KU. In-vitro and In-vivo Determinations of Sun Protection Factors (SPF) of Skin Lotions Containing Mountain Papaya Fruit and Mangosteen Peel Ethanolic Extract. Trad Med J. 2020; 25(3):135-139. Doi:⦁ 10.22146/mot.49931 DOI: https://doi.org/10.22146/mot.49931

⦁ Ríos-Reina R and Azcarate SM. How Chemometrics Revives the UV-Vis Spectroscopy Applications as an Analytical Sensor for Spectralprint (Nontargeted) Analysis. Chemosensors. 2023; 11(1):8. Doi: ⦁ 10.3390/chemosensors11010008 DOI: https://doi.org/10.3390/chemosensors11010008

⦁ Angrish A, Kumar R, Chauhan R, Sharma V. On the IR spectroscopy and chemometric based rapid and non-destructive method for the investigation of sunscreen stains: Application in forensic science. Spectrochim. Acta A Mol Biomol. 2020; 242:118708. Doi: ⦁ 10.1016/j.saa.2020.118708 DOI: https://doi.org/10.1016/j.saa.2020.118708

⦁ Li Y, Via BK, Young T, Li Y. Visible-Near Infrared Spectroscopy and Chemometric Methods for Wood Density Prediction and Origin/Species Identification. Forests. 2019; 10(12):1078. Doi: ⦁ 10.3390/f10121078 DOI: https://doi.org/10.3390/f10121078

⦁ Enegide C, Akah PA, Ezike AC, Ameh SF, Ezenyi IC, Okhale SE. Evaluation of the Antioxidant, Antinociceptive and Anti-Inflammatory Activities of Combretum Nigricans Ethanol Leaf Extract. Trop J Nat Prod Res. 2024;8(6):7554-7560. ⦁ Doi: 10.26538/tjnpr/v8i6.35. DOI: https://doi.org/10.26538/tjnpr/v8i6.35

⦁ Rafi M, Jannah R, Heryanto R, Kautsar A, Septaningsih DA. UV-Vis spectroscopy and chemometrics as a tool for identification and discrimination of four Curcuma species. Int Food Res J. 2018; 25(2):643-648.

⦁ Aloanis AA, Karundeng M, Paat V, Tengker SMT, Siwu O. Sun protecting factor value of the Ficus benjamina Linn. fruits extract. J Phys Conf Ser. 2021; 1968:012009. DOI: https://doi.org/10.1088/1742-6596/1968/1/012009

⦁ Shabrina AM, Azzahra RSS, Permata IN, Dewi HP, Safitri RA, Maya I, Aulia RN, Sriwidodo S, Mita SR, Amalia E, Putriana NA.Potential of Natural-Based Sun Protection Factor (SPF): A Systematic Review of Curcumin as Sunscreen. Cosmetics. 2025; 12(1):10. Doi: ⦁ 10.3390/cosmetics12010010 DOI: https://doi.org/10.3390/cosmetics12010010

⦁ Tjitda PJP, Nitbani FO, Bangko MK. Sunscreen Activity of Fraction n-hexane, Chloroform, and Ethyl Acetate of Ethanol 96% Flamboyant Leaf (Delonix regia. Raf) Extract. Trad Med J. 2021; 26(1):42-48. Doi: ⦁ 10.22146/mot.54425 DOI: https://doi.org/10.22146/mot.54425

⦁ Mierziak J, Kostyn K, Kulma A. Flavonoids as important molecules of plant interactions with the environment. Molecules. 2014; 19(10):16240-16265. Doi: 10.3390/molecules191016240 DOI: https://doi.org/10.3390/molecules191016240

⦁ Martinez V, Borrás-Linares I, Lozano-Sánchez J. Influence of environmental conditions on phenolic composition and antioxidant capacity in plant extracts. J Agric Food Chem. 2020; 68(5):1432-1445. Doi: 10.26599/JFB.2024.95028394 DOI: https://doi.org/10.26599/JFB.2024.95028394

⦁ Foss K, Przybyłowicz KE, Sawicki T. Antioxidant activity and profile of phenolic compounds in selected herbal plants. Plant Foods for Human Nutrition. 2022; 77(3):383-389. Doi: 10.1007/s11130-022-00989-w DOI: https://doi.org/10.1007/s11130-022-00989-w

⦁ Erol Ö and Irmisch S. Identification of Flavonoids Using UV-Vis and MS Spectra. Methods Mol Biol. 2025; 2895:111-135. Doi: 10.1007/978-1-0716-4350-1_9 DOI: https://doi.org/10.1007/978-1-0716-4350-1_9

⦁ Mir SA, Dar A, Hamid L, Nisar N, Malik JA, Ali T, Bader GN. Flavonoids as promising molecules in the cancer therapy: An insight. Curr Res Pharmacol Drug Discov. 2023; 6:100167. Doi: ⦁ 10.1016/j.crphar.2023.100167 DOI: https://doi.org/10.1016/j.crphar.2023.100167

⦁ Pérez-Sánchez A, Barrajon-Catalan E, Herranz-Lopez M, Micol V. Nutraceuticals for skin care: A comprehensive review of human clinical studies. Nutrients. 2018; 10(4):403. Doi: 10.3390/nu10040403 DOI: https://doi.org/10.3390/nu10040403

⦁ Casoni D, Cobzac SCA, Simion IM. Feasibility of UV–Vis spectroscopy combined with pattern recognition techniques to authenticate the medicinal plant material from different geographical areas. J Anal Sci Technol. 2024; 15:17. Doi: ⦁ 10.1186/s40543-024-00428-2 DOI: https://doi.org/10.1186/s40543-024-00428-2

⦁ Kim SY and Ha JH. Rapid determination of the geographical origin of kimchi by Fourier transform near-infrared spectroscopy coupled with chemometric techniques. Sci Rep. 2024; 14:24581. Doi: ⦁ 10.1038/s41598-024-74662-4 DOI: https://doi.org/10.1038/s41598-024-74662-4

⦁ Jolliffe IT and Cadima J. Principal component analysis: a review and recent developments. Philos. Transact. A Math Phys Eng Sci. 2016; 374(2065):20150202. Doi: 10.1098/rsta.2015.0202 DOI: https://doi.org/10.1098/rsta.2015.0202

⦁ Chemat F, Abert Vian M, Ravi HK, Khadhraoui B, Hilali S, Perino S, Fabiano Tixier AS. Review of Alternative Solvents for Green Extraction of Food and Natural Products: Panorama, Principles, Applications and Prospects. Molecules. 2019; 24(16):3007. Doi: molecules24163007 DOI: https://doi.org/10.3390/molecules24163007

⦁ Arifah MF, Hastuti AAMB, Rohman A. Utilization of UV-visible and FTIR spectroscopy coupled with chemometrics for differentiation of Indonesian tea: an exploratory study. Indones J Pharm. 2022; 33(2):200–207. Doi:10.22146/ijp.3795 DOI: https://doi.org/10.22146/ijp.3795

⦁ Tura D, Ferretti G, Moneti G. Effect of solvent polarity on bioactive compound extraction: A comparative study. Nat Prod Res. 2022; 36(5):1127-1139.

⦁ Vongsak B, Sithisarn P, Gritsanapan W, Wongkrajang Y. Bioactive components and antioxidant properties of different solvent extracts derived from Moringa oleifera leaves. Asian Pac J Trop Biomed. 2015; 5(12):1024-1029.

⦁ Huong DTT, Thuy NT, Minh LT. Evaluation of sun protection factor (SPF) of flavonoid-rich plant extracts. Int J Pharmacogn Phytochem Res. 2020; 12(4):210-219.