Biological Actions of Peronema canescens Jack on the Properties of Alginate and Virulence of Staphylococcus aureus
DOI:
https://doi.org/10.26538/tjnpr/v9i8.36Keywords:
Staphylococcus aureus, Peronema canescens Jack, biofilm, dental materials, surface integrity, porosityAbstract
Staphylococcus aureus contamination in dental impression materials, such as alginate, presents significant challenges in clinical settings. These include reduced material integrity, elevated infection risks, and decreased procedural accuracy, especially in immunocompromised patients. Conventional disinfection methods may be insufficient against biofilm-forming bacteria, prompting the exploration of natural antimicrobials as safer alternatives. This study investigated the effects of Peronema canescens Jack extract on the physical properties of alginate and the virulence of S. aureus, including growth and biofilm formation. Thirty-six alginate samples were divided into six treatment groups, with the extract applied as a spray at concentrations of 0.5% and 1%. Bacterial growth was assessed spectrophotometrically (OD 620 nm), porosity was examined via scanning electron microscopy (SEM), and surface texture was analyzed using a texture analyzer. Biofilm formation was evaluated using a 1% crystal violet assay and visualized under light microscopy. The 0.5% extract concentration exhibited the highest bacteriostatic activity (OD 0.08, <300 CFU/mL), effectively reducing S. aureus growth and biofilm mass. It also preserved the physical integrity of alginate by minimizing porosity and maintaining a smoother surface. These effects were comparable to those of 0.2% chlorhexidine. In conclusion, P. canescens Jack extract at 0.5% demonstrated a significant reduction in S. aureus biofilm mass, while effectively preserving alginate porosity and surface texture, supporting its application as a biocompatible antimicrobial agent in dental impression materials.
References
Singer L, Karacic S, Szekat C, Bierbaum G, Bourauel C. Biological properties of experimental dental alginate modified for self-disinfection using green nanotechnology. Clin Oral Investig. 2023;27(11):6677-6688. doi: 10.1007/s00784-023-05277-8.
Asmah N, Ilmianti I, Abdi MJ, Irawati E, Nursaid H. Effectiveness of Camellia Sinensis L Extract in Inhibiting the Growth of Staphylococcus aureus. J Syiah Kuala Dent Soci 2023;8(2):217-21. Doi:10.24815/jds.v8i2.32682
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol. 2021;19(11):620339. Doi: 10.3389/fimmu.2020.62 0339.
Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2011;2(5):445-59. Doi: 10.4161/viru.2.5.17724.
Cervino G, Fiorillo L, Herford AS, Laino L, Troiano G, Amoroso G, Crimi S, Matarese M, D'Amico C, Nastro Siniscalchi E, Cicciù M. Alginate Materials and Dental Impression Technique: A Current State of the Art and Application to Dental Practice. Mar Drugs. 2018;17(1):18. Doi: 10.3390/md17010018.
Xie F. Alginate-based nanocomposites for food preservation: Recent progress showcasing heightened material properties and functionalities. Advanced Nanocomposites 2024. Doi.org/10.1016/j.adna.2024.07.002.
Pispero A, Lombardi N, Manfredi M, Varoni EM, Sardella A, Lodi G. Oral infections in oral cancer survivors: A mini-review. Front Oral Health. 2022;3:970074. Doi: 10.3389/froh. 2022.970074.
Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front Cell Infect Microbiol. 2020;10:107. Doi: 10.3389/fcimb.2020.00107.
Chakraborty S, Dutta H. Use of nature‐derived antimicrobial substances as safe disinfectants and preservatives in food processing industries: A review. J Food Process Preserv. 2022;46(10):e15999. Doi:10.1111/jfpp.15999
Ahkam AH, Susilawati Y, Sumiwi SA. Peronema canescens as a Source of Immunomodulatory Agents: A New Opportunity and Perspective. Biology 2024;13(9):744. Doi:10.3390/ biology13090744.
Tatli Cankaya II, Somuncuoglu EI. Potential and Prophylactic Use of Plants Containing Saponin-Type Compounds as Antibiofilm Agents against Respiratory Tract Infections. Evid Based Complement Alternat Med. 2021;2021:6814215. Doi: 10.1155/2021/6814215.
Khan H, Aschner M, Mirzaei H. Phytonutrients and Neurological Disorders: Therapeutic and Toxicological Aspects: Academic Press; 2023. Doi:10.1016/C2020-0-01923-7
Noviyandri PR, Nuza D, Sungkar S. Effect of ethanol extract of robusta coffee leaves (Coffea canephora var. robusta) against Streptococcus mutans growth. J Syiah Kuala Dent Soc. 2020;5(2):75-79. Doi.org/10.24815/jds.v5i2.20017
Abidin T, Geovani G. The Effect of 2% Chitosan Oligosaccharides and 15% EDTA on Calcium Loss in the Root Canal. J Syiah Kuala Den. Soc. 2023;8(1):9-15. Doi.org/10.24815/jds.v8i1.33005
Asmah N, Suniarti DF, Bachtiar EW, Margono DA, Gani BA. Chemical compounds Antibacterial of Citrus aurantifolia Ethanol Extract to Inhibit the Early Biofilm Formation and Growth of Enterococcus faecalis Root Canal Isolate. Res J Pharm Techno. 2022;15(6):2667-74. Doi:10.52711/0974-360X.2022.00446.
Mahmoudi S, Nasiri R, Jafari Sales A. In-vitro antibacterial effects of methanolic extract of peppermint (Mentha Piperita Lamiaceae) on standard Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa strain. Jorjani Biomed J. 2019;7(4):4-10. Doi:10.29252/jorjanibiomedj.7.4.4.
Liu B, Zhang X, Ding X, Wang Y, Zhu G. Regulatory mechanisms of sub-inhibitory levels antibiotics agent in bacterial virulence. Appl Microbiol Biotechnol. 2021;105(9):3495-3505. Doi: 10.1007/s00253-021-11291-1.
Gomes A, Sobral PJDA. Plant Protein-Based Delivery Systems: An Emerging Approach for Increasing the Efficacy of Lipophilic Bioactive Compounds. Molecules. 2021;27(1):60. Doi: 10.3390/molecules27010060.
Wijesundara NM, Lee SF, Cheng Z, Davidson R, Rupasinghe HPV. Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Sci Rep. 2021;11(1):1487. Doi: 10.1038/s41598-020-79713-0.
Zai MJ, Cheesman MJ, Cock IE. Phytochemical Evaluation of Terminalia canescens DC. Radlk. Extracts with Antibacterial and Antibiotic Potentiation Activities against Selected β-Lactam Drug-Resistant Bacteria. Molecules. 2024;29(6):1385. Doi: 10.3390/molecules29061385.
Vadakkan K, Sathishkumar K, Kuttiyachan Urumbil S, Ponnenkunnathu Govindankutty S, Kumar Ngangbam A, Devi Nongmaithem B. A review of chemical signaling mechanisms underlying quorum sensing and its inhibition in Staphylococcus aureus. Bioorg Chem. 2024;148:107465. Doi: 10.1016/j.bioorg.2024.107465.
Zhang Z, Liu A, Fan J, Wang M, Dai J, Jin X, Deng H, Wang X, Liang Y, Li H, Zhao Y, Wen P, Li Y. A drug-loaded composite coating to improve osteogenic and antibacterial properties of Zn-1Mg porous scaffolds as biodegradable bone implants. Bioact Mater. 2023;27:488-504. Doi: 10.1016/j.bioactmat.2023.04.017.
Bhattacharya M, Horswill AR. The role of human extracellular matrix proteins in defining Staphylococcus aureus biofilm infections. FEMS Microbiol Rev. 2024;48(1):fuae002. Doi: 10.1093/femsre/fuae002.
Tosif MM, Najda A, Bains A, Kaushik R, Dhull SB, Chawla P, Walasek-Janusz M. A Comprehensive Review on Plant-Derived Mucilage: Characterization, Functional Properties, Applications, and Its Utilization for Nanocarrier Fabrication. Polymers (Basel). 2021;13(7):1066. Doi: 10.3390/polym13071066.
Crascì L, Lauro MR, Puglisi G, Panico A. Natural antioxidant polyphenols on inflammation management: Anti-glycation activity vs metalloproteinases inhibition. Crit Rev Food Sci Nutr. 2018;58(6):893-904. Doi: 10.1080/10408398.2016.1229657.
Szekalska M, Czajkowska-Kośnik A, Maciejewski B, Misztalewska-Turkowicz I, Wilczewska AZ, Bernatoniene J, Winnicka K. Mucoadhesive Alginate/Pectin Films Crosslinked by Calcium Carbonate as Carriers of a Model Antifungal Drug-Posaconazole. Pharmaceutics. 2023 ;15(10):2415. Doi: 10.3390/pharmaceutics15102415.
Debnath K, Shekhar S, Kumar V, Jana NR, Jana NR. Efficient inhibition of protein aggregation, disintegration of aggregates, and lowering of cytotoxicity by green tea polyphenol-based self-assembled polymer nanoparticles. ACS Applied Mater interfac. 2016;8(31):20309-18. Doi.org/10.1021/acsami.6b06853
Rubio-Canalejas A, Baelo A, Herbera S, Blanco-Cabra N, Vukomanovic M, Torrents E. 3D spatial organization and improved antibiotic treatment of a Pseudomonas aeruginosa-Staphylococcus aureus wound biofilm by nanoparticle enzyme delivery. Front Microbiol. 2022;13:959156. Doi: 10.3389/fmicb.2022.959156.
Heinämäki J, Koshovyi O, Botsula I, Shpychak A, Vo HQ, Nguyen HT, Raal A. Plant-Origin Compounds and Materials for Advancing Bone Tissue Engineering and 3D Bioprinting: Traditional Medicine Aspects and Current Perspectives. J Tissue Eng Regen Med. 2025;2025:2812191. Doi: 10.1155/term/2812191.
Ramburrun P, Pringle NA, Dube A, Adam RZ, D'Souza S, Aucamp M. Recent Advances in the Development of Antimicrobial and Antifouling Biocompatible Materials for Dental Applications. Materials (Basel). 2021;14(12):3167. Doi: 10.3390/ma14123167.
De Rossi L, Rocchetti G, Lucini L, Rebecchi A. Antimicrobial Potential of Polyphenols: Mechanisms of Action and Microbial Responses-A Narrative Review. Antioxidants (Basel). 2025;14(2):200. Doi: 10.3390/antiox14020200.
Schubert A, Wassmann T, Holtappels M. Predictability of microbial adhesion to dental materials by roughness parameters. Coatings. 2019;9(7):456. Doi:10.3390/coatings9070456.
Budala DG, Martu MA, Maftei GA, Diaconu-Popa DA, Danila V, Luchian I. The Role of Natural Compounds in Optimizing Contemporary Dental Treatment-Current Status and Future Trends. J Funct Biomater. 2023;14(5):273. Doi: 10.3390/jfb14050273.
Fernández-López J, Zhi N, Aleson-Carbonell L, Pérez-Alvarez JA, Kuri V. Antioxidant and antibacterial activities of natural extracts: application in beef meatballs. Meat Sci. 2005 ;69(3):371-80. doi: 10.1016/j.meatsci.2004.08.004.
Sahin Z, Ozer NE, Calı A. Impact of surface roughness and wettability on microbial adhesion of temporary prostheses made by additive, subtractive, and conventional methods. Eur J Oral Sci. 2025:e70027. Doi: 10.1111/eos.70027.
Guzzo F, Scognamiglio M, Fiorentino A, Buommino E, D'Abrosca B. Plant Derived Natural Products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm Activity and Molecular Mechanisms. Molecules. 2020;25(21):5024. doi: 10.3390/molecules25215024.
Samrot AV, Abubakar Mohamed A, Faradjeva E, Si Jie L, Hooi Sze C, Arif A, Chuan Sean T, Norbert Michael E, Yeok Mun C, Xiao Qi N, Ling Mok P, Kumar SS. Mechanisms and Impact of Biofilms and Targeting of Biofilms Using Bioactive Compounds-A Review. Medicina (Kaunas). 2021 ;57(8):839. Doi: 10.3390/medicina57080839.
Damyanova T, Dimitrova PD, Borisova D, Topouzova-Hristova T, Haladjova E, Paunova-Krasteva T. An Overview of Biofilm-Associated Infections and the Role of Phytochemicals and Nanomaterials in Their Control and Prevention. Pharmaceutics. 2024;16(2):162. Doi: 10.3390/pharmaceutics16020162.
Fadriyanti O, Afriza D, Chaerunnisa C. Biological Effect of Peronema canescens Jack on The Surface Changes of Alginate Mold. J Syiah Kuala Dent Soc. 2023;8:1-8. Doi.org/10.24815/jds.v8i1.33001.
Alharbi MA, Alrehaili AA, Albureikan MOI, Gharib AF, Daghistani H, Bakhuraysah MM, Aloraini GS, Bazuhair MA, Alhuthali HM, Ghareeb A. In vitro studies on the pharmacological potential, anti-tumor, antimicrobial, and acetylcholinesterase inhibitory activity of marine-derived Bacillus velezensis AG6 exopolysaccharide. RSC Adv. 2023;13(38):26406-26417. Doi: 10.1039/d3ra04009g.
Touati A, Mairi A, Ibrahim NA, Idres T. Essential Oils for Biofilm Control: Mechanisms, Synergies, and Translational Challenges in the Era of Antimicrobial Resistance. Antibiotics (Basel). 2025;14(5):503. doi: 10.3390/antibiotics14050503.
Bouyahya A, Chamkhi I, Balahbib A, Rebezov M, Shariati MA, Wilairatana P, Mubarak MS, Benali T, El Omari N. Mechanisms, Anti-Quorum-Sensing Actions, and Clinical Trials of Medicinal Plant Bioactive Compounds against Bacteria: A Comprehensive Review. Molecules. 2022 ;27(5):1484. Doi: 10.3390/molecules27051484.
Published
Issue
Section
License
Copyright (c) 2025 Tropical Journal of Natural Product Research

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.





