Molecular Identification, Phytochemical Profiling, and Organoleptic Evaluation of Arabica Coffee (Coffea arabica) from Timor Leste

Authors

  • Jorge A. D. Jesus Doctoral Study Program in Agricultural Sciences, Udayana University, Denpasar, Bali, Indonesia
  • I G. P. Wirawan Faculty of Agriculture, Udayana University, Denpasar, Bali, Indonesia
  • I K. Suada Faculty of Agriculture, Udayana University, Denpasar, Bali, Indonesia
  • Ni L. Kartini Faculty of Agriculture, Udayana University, Denpasar, Bali, Indonesia
  • I N. Wijaya Faculty of Agriculture, Udayana University, Denpasar, Bali, Indonesia
  • Rindang Dwiyani Faculty of Agriculture, Udayana University, Denpasar, Bali, Indonesia
  • Ida A. P. Darmawati Faculty of Agriculture, Udayana University, Denpasar, Bali, Indonesia
  • Ni M. Trigunasih Faculty of Agriculture, Udayana University, Denpasar, Bali, Indonesia
  • Ni K. E. S. Dewi Plant Protection Department, Faculty of Agriculture, Lampung University, Bandar Lampung, Lampung, Indonesia

DOI:

https://doi.org/10.26538/tjnpr/v9i8.34

Keywords:

Arabica coffee, Molecular identification, Phytochemical, Organoleptic

Abstract

Arabica coffee is the oldest coffee species cultivated in Timor-Leste and is distributed from midland to highland regions. Alongside Arabica, several cultivars such as Catimor, Hibrido de Timor (HdT), and Kartika have been traditionally grown, often mixed within the same plots, leading to new genotypes with unique phenotypes. Accurate identification and characterization of Arabica coffee thus require combined morphological, molecular, and phytochemical analyses. This study involved morphological characterization, molecular identification using matK and rbcL primers, phytochemical profiling by GC-MS, and antioxidant activity assessment via the DPPH method. The organoleptic evaluation was also conducted through hedonic testing. Molecular analysis with matK primers showed that all four samples were genetically closest to Coffea arabica and Coffea eugenioides, while rbcL analysis indicated the Ainaro sample's closest similarity to Coffea environmental. Phytochemical analysis revealed the presence of caffeine, linoleic acid, and eicosadienoic acid in all samples. Antioxidant compounds such as phenols, flavonoids, and tannins were detected across samples, with the highest antioxidant capacity found in the Ermera sample (3616.26 mg/L GAEAC). The Aileu sample demonstrated the most potent free radical scavenging activity, with the lowest IC₅₀ value (68.38 ppm). Organoleptic testing highlighted Ermera coffee's superior color, taste, and aroma, with 67% of panelists rating it as very good. These findings contribute to the comprehensive profiling and quality assessment of Arabica coffee cultivars in Timor-Leste.

References

Gomez C, Despinoy M, Hamon S, Hamon P, Salmon D, Doffou S, Poncet V. Shift in precipitation regime promotes interspecific hybridization of introduced Coffea species. Ecol Evol. 2016;6(10):3240–3255. doi:10.1002/ece3.2055.

Gimase JM, Thagana WM, Kirubi DT, Gichuru EK, Gichimu BM. Genetic characterization of Arabusta coffee hybrids and their parental genotypes using molecular markers. Plant Cell Biotechnol Mol Biol. 2014;15(1-2):31–42.

Mahé L, Le Pierrès D, Combes MC, Lashermes P. Introgressive hybridization between the allotetraploid Coffea arabica and one of its diploid ancestors, Coffea canephora, in an exceptional sympatric zone in New Caledonia. Genome. 2007;50:316–324.

Santos EA, Souza MM, Viana AP, Almeida AAF, Freitas JCO, Lawinsky P. Multivariate analysis of morphological characteristics of two species of Passionflower with ornamental potential and hybrids between them. Gen Mol Res. 2011;10(4):2457–2471.

Mishra MK, Slater A. Recent advances in the genetic transformation of coffee. Biotechnol Res Int. 2012. doi:10.1155/2012/580857.

Stevanus, Pharmawati M. Biodiversity and phylogenetic analyses using DNA barcoding rbcL gene of seagrass from Sekotong, West Lombok, Indonesia. Biodiversitas. 2021;22(1):50–57.

Kolondam BJ. Applying matK gene for identification of Liliopsida plant species from North Sulawesi through Bold Systems. Int J Appl Biol Pharm. 2012;6(2).

Borém FM, Figueiredo LP, Ribeiro FC, Taveira JHS, Giomo GS, Salva TJG. The relationship between organic acids, sucrose, and the quality of specialty coffees. Afr J Agric Res. 2016;11:709–717.

Fassio LO, Pereira RGFA, Malta MR, Liska GR, Sousa MMM, Carvalho GR. Sensory profile of Arabica coffee accesses of the germplasm collection of Minas Gerais - Brazil. Coffee Sci. 2019;14:382–393.

Malta MR, Fassio L, Liska GR, Carvalho GR, Pereira AA. Discrimination of genotype coffee by chemical composition of the beans: potential markers in natural coffees. Food Res Int. 2020;134:109219.

Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5:9–19.

Marcucci C, Dias R, Almeida M, Benassi M. Antioxidant activity of commercial soluble coffees. Beverages. 2017;3(4):27. doi:10.3390/beverages3020027.

Abdul Majid AM. Sensory evaluation of beverage characteristics and biochemical components of coffee genotypes. J Food Sci Tech. 2014;2(12):281–288.

Purnamayanti N, Gunadnya I, Arda G. The Effect of Roasting Temperature and Duration on the Physical Characteristics and Sensory Quality of Arabica Coffee (Coffee arabica L). J Beta. 2017;5(2):39–48.

International Union for the Protection of New Varieties of Plants. Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability. UPOV; 2008.

Allen G, Flores-Vergara M, Krasynanski S. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc. 2006;1:2320–2325.

Adip MS, Hendrarto B, Purwanti B. Hue Value of Rhizophora Leaves: Its Relationship with Environmental Factors and Leaf Chlorophyll at Ringgung Beach, Sidodadi Village, Padang Cermin Subdistrict, Lampung. Maquares. 2014;3(2):20–26. doi:10.14710/marj.v3i2.4839.

Lee DW, Gould KS. Why leaves turn red. Am Sci. 2002;90(6):524–531.

Budiman H. Prospek Tinggi Bertanam Kopi. Yogyakarta: Pustaka Baru Press; 2012.

Ichsan CNI, Hereri AI, Budiarti L. Study of Fruit Color and Seed Size on the Viability of Arabica Coffee (Coffea arabica L.) Seeds of Gayo 1 Variety. J Floratek. 2013;8(2):110–117.

Indrawanto C, Kamawati E, Munarso, Prastowo SJ, Rubiyo B, Siswanto. Coffee Cultivation and Postharvest. Bogor (ID): Indonesian Center for Estate Crops Research and Development.; 2010.

Sundari S, Priadi B. DNA Isolation and Electrophoresis Techniques for Tapah Fish. Buletin Teknik Litkayasa Akuakultur. 2019;17(2):87–90.

Thieman WJ, Michael AP. Introduction to Biotechnology. New York: Pearson; 2013.

Bawin Y, Ruttink T, Staelens A, Haegeman A, Stoffelen P, Mwanga JCI, Roldán-Ruiz I, Honnay O, Janssens SB. Phylogenomic analysis clarifies the evolutionary origin of Coffea arabica. J Sys Evol. 2021;59(5):953–963. doi:10.1111/jse.12694.

Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, et al., The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science. 2014;345(6201):1181–1184. doi:10.1126/science.1255274.

Yahayu M, Hamid ZBS, El Adawi H, Dailin DJ. A comprehensive study on the antioxidant activity of coffee extracts. Bio Res. 2020;17(3):2249–2263.

Handayani H, Sriherfyna FH, Yunianta. Antioxidant Extraction from Soursop Leaves Using the Ultrasonic Bath Method (Study of Material-to-Solvent Ratio and Extraction Duration). J Pan Agro. 2016;4(1):262–272.

Hilma N, Nadiyah A, Puspitasari DP, Nilda L. Determination of total phenol and total flavonoid content of longan (Dimocarpus longan Lour) leaf extract. Indo J Pharm Sci Tech. 2021;12(1):81–86.

Alfaridz A. Classification and Pharmacological Activities of Flavonoid Active Compounds. Farmaka. 2018;16(3):1–7.

Sudira IW, Merdana I, Wibawa I. Inhibitory Effect Test of Kedondong Leaf Extract (Lannea grandis Engl) on the Growth of Erwinia carotovora Bacteria. J Vet. 2011;12(3):278–284.

Ennis D. The effect of caffeine on health: the benefits outweigh the risks. J Acad Pers 2014;6(2).

Hovhaness M, Sawitri AH, Sasongko H. A review of the phytochemistry, pharmacology, and properties of black tea in health. Trop J Nat Prod Res. 2025;9(3):881–895. doi:10.26538/tjnpr/v9i3.01.

Misrahanum M, Zahira CAD, Saidi N. Antibacterial Activity Test of Ethanol Extract of Agarwood Leaves (Aquilaria malaccensis Lamk.) and Compound Identification Using GC-MS Method. J Pharm. 2022;9(2):310–318.

Simbolon B, Pakpahan K, Siswani MZ. Study on the Utilization of Arabica Coffee Beans as Raw Material for Biodiesel Production. J Tek Kim USU. 2013;2(3):44–50.

Odinga T-B, Leutcha PB, Ndukwe GI, Yousuf S, Choudhary MI, Efekemo O, Otobo MB, Enebeli SK, Lemii BC, Edward UF. Glucogallin and conjugated linoleic acids isolated from Ricinodendron heudelotii (Bail.) seeds. Trop J Nat Prod Res. 2024;8(6):7530–7534. doi:10.26538/tjnpr/v8i6.31.

Park SY, Seetharaman R, Ko MJ, Kim DY, Kim TH, Yoon MK, Kwak JH, Lee SJ, Bae YS, Choi YW. Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-inflammatory cytokine production by inducing heme oxygenase-1 in RAW264.7 cells. Int Immunopharmacol. 2014;19(2):253–261.

Tallima H, Ridi RE. Arachidonic acid: physiological roles and potential health benefits – a review. J Adv Res. 2018;11:33–41.

El-Gendy EA, Helal MA, Goher NH, Mostageer A. Molecular characterization of genetic biodiversity in ducks, using RAPD-PCR analysis. Arab J Biotech. 2005;8(2):253–264.

Casiglia S, Bruno M, Bramucci M, Quassinti L, Lupidi G, Fiorini D, Maggi F. Kundmannia sicula (L.) DC: a rich source of germacrene D. J Essen Oil Res. 2017;29(6):501–507.

Farida A, Ristanti E, Kumoro AC. Reduction of Caffeine and Total Acidity in Robusta Coffee Beans Using Facultative Anaerobic Fermentation Technology with Nopkor MZ-15 Microbes. J Tek Kim Ind. 2013;2(3).

Saleh E. Basics of Milk Processing and Livestock By-Products. Study Program of Animal Production, Faculty of Agriculture, University of North Sumatra; 2004.

Mulato I, Suharyanto E. Brewed Coffee and Health. Kompasiana. 2012. http://kesehatan.kompasiana.com [Accessed 8 February 2025].

Tyas NL. The Effect of Roasting Duration on the Physicochemical and Organoleptic Properties of Arabica Coffee Powder Grown in the Wonosobo Region (Coffea arabica). Αγαη. 2019;8(5):55.

Baggenstoss J, Poisson L, Kaegi R, Perren R, Escher F. Coffee roasting and aroma formation: application of different time-temperature conditions. J Agri Food. 2008;56(14):5836–5846.

Lokaria E, Susanti I. Organoleptic Test of Salak Seed Coffee with Different Roasting Time Variants. Bioedusains. 2018;1(1):34–42

Downloads

Published

2025-08-31

How to Cite

Molecular Identification, Phytochemical Profiling, and Organoleptic Evaluation of Arabica Coffee (Coffea arabica) from Timor Leste. (2025). Tropical Journal of Natural Product Research , 9(8), 3749-3756. https://doi.org/10.26538/tjnpr/v9i8.34