Potential of Persimmon (Diospyros kaki L.) Compounds for the Treatment of Breast Cancer: A Network Pharmacology Study
Main Article Content
Abstract
The persimmon (Diospyros kaki L.) fruit is known for its wide range of health benefits, but its potential in breast cancer treatment has not been extensively studied. This study aimed to explore the bioactive compounds of persimmon using a network pharmacology approach to determine their therapeutic potential against breast cancer. The bioactive compounds of persimmon were collected from literature studies, while breast cancer target proteins were identified using the GeneCards and DisGeNET databases. Protein-protein interaction visualization was conducted using STRING, and molecular signaling pathway analysis was performed through KEGG. The results identified 350 target proteins of persimmon compounds, 23 of which interacted with breast cancer. Analysis revealed that among these 23 target genes, 10 key genes (ESR1, BRCA1, BRCA2, PIK3CA, TP53, PTEN, AKT1, KRAS, MYC, ESR2) were associated with the active compounds gallic acid, ferulic acid, ellagic acid, P-coumaric acid, chlorogenic acid, and protocatechuic acid, demonstrating significant potential as therapeutic agents in breast cancer treatment. These substances work by preventing cell division, triggering programmed cell death, and controlling pertinent molecular signalling pathways. Therefore, the active compounds in persimmon fruit hold great potential as natural therapeutic agents for breast cancer, providing a foundation for further research into the development of plant-based therapies.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Matheus JRV, Andrade CJ de, Miyahira RF, Fai AEC. Persimmon (Diospyros kaki L.): Chemical Properties, Bioactive Compounds and Potential Use in the Development of New Products–A Review. Food Rev Int. 2022; 38(4):384-401. doi:10.1080/87559129.2020.1733597 DOI: https://doi.org/10.1080/87559129.2020.1733597
Sembiring J, Perangin-angin MI, Yakub S. Sistem Pakar Mendiagnosa Penyakit pada Buah Kesemek (Diospyros kaki) mengggunakan Metode Certainty Factor. Jurnal Sistem Informasi TGD. 2022; 1(4):258-262. https://ojs.trigunadharma.ac.id/index.php/jsi DOI: https://doi.org/10.53513/jursi.v1i4.5130
Wau TPK, Izdihar DF, Gunawan K, Putri Lubis YE. Uji Efektivitas Ekstrak Buah Kesemek (Dyospiros kaki L.) sebagai Antibakteri terhadap Bakteri Escherichia Coli. J Biol Trop. 2019; 19(2):260-267. doi:10.29303/jbt.v19i2.1049 DOI: https://doi.org/10.29303/jbt.v19i2.1049
Junaidy R, Redha F, Sa’diah H, Busthan M. Pengaruh Penambahan Konsentrasi Gula dan Sari Jeruk Nipis terhadap Mutu Sirup Buah Kesemek (Diospyrus Kaki). Majalah Biam. 2020; 16(01):29-35. https://doi.org/10.29360/mb.v16i1.6085
Maulidiani M, Abdul-Hamid NA, Abas F, Park YS, Park YK, Kim YM, Gorinstein S. Detection of bioactive compounds in persimmon (Diospyros kaki) using UPLC-ESI-Orbitrap-MS/MS and fluorescence analyses. Microchem J. 2019; 149:103978. doi:10.1016/j.microc.2019.103978 DOI: https://doi.org/10.1016/j.microc.2019.103978
Mujawah A, Rauf A, Bawazeer S, Wadood A, Hemeg HA, Bawazeer S. In-vitro antioxidant, lipoxygenase inhibitory, and In-vivo muscle relaxant potential of the extract and constituent isolated from Diospyros kaki (Japanese Persimmon). Heliyon. 2023; 9(3):e13816. doi:10.1016/j.heliyon.2023.e13816 DOI: https://doi.org/10.1016/j.heliyon.2023.e13816
Athanasiadis V, Chatzimitakos T, Bozinou E, Kotsou K, Palaiogiannis D, Lalas SI. Maximizing the Extraction of Bioactive Compounds from Diospyros kaki Peel through the Use of a Pulsed Electric Field and Ultrasound Extraction. Biomass (Switzerland). 2023; 3(4):422-440. doi:10.3390/biomass3040025 DOI: https://doi.org/10.3390/biomass3040025
Hong C, Wang X, Xu J, Guo J, Peng H, Zhang Y. A Review: Pharmacological Effect of Natural Compounds in Diospyros kaki Leaves from the Perspective of Oxidative Stress. Molecules. 2024; 29(1):29010215. doi:10.3390/molecules29010215 DOI: https://doi.org/10.3390/molecules29010215
Alamsyah F, Pratiwi R, Firdausi N, Pello JIM, Nugraheni SED, Fadhlurrahman AG, Nurhidayat L, Taruno WP. Cytotoxic T cells response with decreased CD4/CD8 ratio during mammary tumors inhibition in rats induced by non-contact electric fields. F1000Res. 2021; 10:35. doi:10.12688/f1000research.27952.1 DOI: https://doi.org/10.12688/f1000research.27952.2
Hero SK. Faktor Risiko Kanker Payudara. Jurnal Medika Hutama. 2021; 03(01):1533-1537.
Subekti RT. Hubungan Dukungan Keluarga terhadap Tingkat Kecemasan pada Pasien Kanker Payudara yang Menjalani Kemoterapi. Jurnal Kesehatan Panca Bhakti Lampung. 2020; 8(1):1. doi:10.47218/jkpbl.v8i1.74 DOI: https://doi.org/10.47218/jkpbl.v8i1.74
Britt KL, Cuzick J, Phillips KA. Key Steps for Effective Breast Cancer Prevention. Nat Rev Cancer. 2020; 20(8):417-436. doi:10.1038/s41568-020-0266-x DOI: https://doi.org/10.1038/s41568-020-0266-x
Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J, Cardoso F. Breast cancer. Nat Rev Dis Primers. 2019;5(1):66. doi:10.1038/s41572-019-0111-2 DOI: https://doi.org/10.1038/s41572-019-0111-2
Houghton SC and Hankinson SE. Cancer Progress and Priorities: Breast Cancer. Cancer Epidemiol Biomarkers and Prev. 2021; 30(5):822-844. doi:10.1158/1055-9965.EPI-20-1193 DOI: https://doi.org/10.1158/1055-9965.EPI-20-1193
Narisuari IDAPM and Manuaba IBTW. Prevalensi dan Gambaran Karakteristik Penderita Kanker Payudara di Poliklinik Bedah Onkologi RSUP Sanglah, Bali, Indonesia tahun 2016. Intisari Sains Medis. 2020; 11(1):183-189. doi:10.15562/ism.v11i1.526 DOI: https://doi.org/10.15562/ism.v11i1.526
Wang X, Wang ZY, Zheng JH, Li S. TCM Network Pharmacology: A New Trend towards Combining Computational, Experimental and Clinical Approaches. Chin J Nat Med. 2021; 19(1):1-11. doi:10.1016/S1875-5364(21)60001-8 DOI: https://doi.org/10.1016/S1875-5364(21)60001-8
Noor F, Qamar MTU, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network Pharmacology Approach for Medicinal Plants: Review and Assessment. Pharmaceuticals. 2022; 15(5):572. doi:10.3390/ph15050572 DOI: https://doi.org/10.3390/ph15050572
Stracke CM and Trisolini G. A Systematic Literature Review on the Quality of Moocs. Sustainability (Switzerland). 2021; 13(11):5817. doi:10.3390/su13115817 DOI: https://doi.org/10.3390/su13115817
Permatasari GW, Atho’illah MF, Putra WE. Target Protein Prediction of Indonesian Jamu Kunyit Asam (Curcumin-Tamarind) For Dysmenorrhea Pain Reliever: A network analysis approach. Indones J Med. 2021; 12(3):238-242. doi:10.20885/jkki.vol12.iss3.art7 DOI: https://doi.org/10.20885/JKKI.Vol12.Iss3.art7
Lin Y and Hu Z. Bioinformatics Analysis of Candidate Genes Involved in Ethanol-Induced Microtia Pathogenesis Based on a Human Genome Database: GeneCards. Int J Pediatr Otorhinolaryngol. 2021;142. doi:10.1016/j.ijporl.2020.110595 DOI: https://doi.org/10.1016/j.ijporl.2020.110595
Tjandrawinata RR, Amalia AW, Tuna H, Saidi VN, Tan S. Mekanisme Molekuler Imunomodulasi oleh Huangqi (Astragali Radix) Menggunakan Sistem Farmakologi Jejaring. Jurnal Ilmu Kefarmasian Indonesia. 2022; 20(2):184-195. https://www.ncbi.nlm.nih.gov/gene/ DOI: https://doi.org/10.35814/jifi.v20i2.1301
Rosyadah M, Afendi FM, Kusuma WA. Penguraian Mekanisme Kerja Jamu dengan Menggunakan Analisis Graf Tripartit pada Jejaring Senyawa-Protein-Penyakit. Jurnal Jamu Indonesia. 2017; 2(1):8-16. DOI: https://doi.org/10.29244/jji.v2i1.25
Piñero J, Saüch J, Sanz F, Furlong LI. The Disgenet Cytoscape App: Exploring and Visualizing Disease Genomics Data. Comput
Struct Biotechnol J. 2021; 19:2960-2967. doi:10.1016/j.csbj.2021.05.015. DOI: https://doi.org/10.1016/j.csbj.2021.05.015
Komari N, Adawiyah R, Suhartono E, Hadi S. Interaksi Asam Galat dan Metil Galat dari Tumbuhan Kasturi (Mangifera casturi) sebagai Inhibitor Protein Human Epidermal Growth Factor 2 (HER-2): Evaluasi Molekular Docking. Gunung Djati Conference Series. 2022;15:69-74.
Cheng WJ, Zhang PP, Luo QQ, Deng SM, Jia AQ. The Chemosensitizer Ferulic Acid Enhances Epirubicin-Induced Apoptosis in MDA-MB-231 cells. J Funct Foods. 2020;73. doi:10.1016/j.jff.2020.104130 DOI: https://doi.org/10.1016/j.jff.2020.104130
Park MY, Kim Y, Ha SE, Kim HH, Bhosale PB, Abusaliya A, Jeong SH, Kim GS. Function and Application of Flavonoids in the Breast Cancer. Int J Mol Sci. 2022; 23(14):7732. doi:10.3390/ijms23147732 DOI: https://doi.org/10.3390/ijms23147732
Kalinowska M, Gołębiewska E, Świderski G, Męczyńska-Wielgosz S, Lewandowska H, Pietryczuk A, Cudowski A, Astel A, Świsłocka R, Samsonowicz M, Złowodzka AB, Priebe W, Lewandowski W. Plant-derived and Dietary Hydroxybenzoic Acids—A Comprehensive Study of Structural, Anti-/Pro-Oxidant, Lipophilic, Antimicrobial, and Cytotoxic Activity in Mda-Mb-231 And Mcf-7 Cell Lines. Nutrients. 2021; 13(9):31207. doi:10.3390/nu13093107 DOI: https://doi.org/10.3390/nu13093107
Meirelles LE de F, Souza MVF de, Carobeli LR, Morelli F, Mari NL, Damke E, Mesquita CSS, Teixeira JJV, Consolaro MEL, da Silva VRS. Combination of Conventional Drugs with Biocompounds Derived from Cinnamic Acid: A Promising Option for Breast Cancer Therapy. Biomedicines. 2023; 11(2):275. doi:10.3390/biomedicines11020275 DOI: https://doi.org/10.3390/biomedicines11020275
Wu Z, Liao Q, Liu B. A Comprehensive Review and Evaluation of Computational Methods for Identifying Protein Complexes from Protein-Protein Interaction Networks. Brief Bioinform. 2020; 21(5):1531-1548. doi:10.1093/bib/bbz085 DOI: https://doi.org/10.1093/bib/bbz085
Brett JO, Spring LM, Bardia A, Wander SA. ESR1 Mutation as an Emerging Clinical Biomarker in Metastatic Hormone Receptor-Positive Breast Cancer. Breast Cancer Research. 2021; 23(1):85. doi:10.1186/s13058-021-01462-3 DOI: https://doi.org/10.1186/s13058-021-01462-3
Carausu M, Bidard FC, Callens C, Melaabi S, Jeannot E, Pierga JY, Cabel L. ESR1 Mutations: A New Biomarker in Breast Cancer. Expert Rev Mol Diagn. 2019; 19(7):599-611. doi:10.1080/14737159.2019.1631799 DOI: https://doi.org/10.1080/14737159.2019.1631799
Fu X, Tan W, Song Q, Pei H, Li J. BRCA1 and Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Front Cell Dev Biol. 2022; 10:813457. doi:10.3389/fcell.2022.813457 DOI: https://doi.org/10.3389/fcell.2022.813457
Tutt ANJ, Garber JE, Kaufman B, Viale G, Fumagalli D, Rastogi P, Gelber RD, de Azambuja E, Fielding A, Balmaña J, Domchek SM, Gelmon KA, Hollingsworth SJ, Korde LA, Linderholm B, Bandos H, Senkus E, Suga JM, Shao Z, Pippas AW, Nowecki Z, Huzarski T, Ganz PA, Lucas PC, Baker N, Loibl S, McConnell R, Piccart M, Schmutzler R, Steger GG, Costantino JP, Arahmani A, Wolmark N, McFadden E, Karantza V, Lakhani SR, Yothers G, Campbell C, Geyer CE Jr. Adjuvant Olaparib for Patients with BRCA1 - or BRCA2 -Mutated Breast Cancer. N Engl J Med. 2021; 384(25):2394-2405. doi:10.1056/nejmoa2105215 DOI: https://doi.org/10.1056/NEJMoa2105215
Chang DY, Ma WL, Lu YS. Role of Alpelisib in the Treatment of PIK3CA-Mutated Breast Cancer: Patient Selection and Clinical Perspectives. Ther Clin Risk Manag. 2021; 17:193-207. doi:10.2147/TCRM.S251668 DOI: https://doi.org/10.2147/TCRM.S251668
Rehman B, Abubakar M, Kiani MN, Ayyoub R. Analysis of Genetic Alterations in TP53 Gene in Breast Cancer – A Secondary Publication. Proceedings of Anticancer Research. 2024; 8(3):25-35. doi:10.26689/par.v8i3.6720 DOI: https://doi.org/10.26689/par.v8i3.6720
Derkyi-Kwarteng L, Ghartey FN, Aidoo E, Addae E, Imbeah EG, Brown AA, Acquah S. A Retrospective Analysis Suggests PTEN Expression is Associated with Favorable Clinicopathological Features of Breast Cancer. Sci Rep. 2024; 14(1):21645. doi:10.1038/s41598-024-69252-3 DOI: https://doi.org/10.1038/s41598-024-69252-3
Direito R, Rocha J, Sepodes B, Eduardo-Figueira M. From Diospyros kaki L. (Persimmon) Phytochemical Profile and Health Impact to New Product Perspectives and Waste Valorization. Nutrients. 2021; 13(9):3283. doi:10.3390/nu13093283 DOI: https://doi.org/10.3390/nu13093283
Smrke T, Persic M, Veberic R, Sircelj H, Jakopic J. Influence of Reflective Foil on Persimmon (Diospyros kaki Thunb.) Fruit Peel Colour and Selected Bioactive Compounds. Sci Rep. 2019; 9(1):19069. doi:10.1038/s41598-019-55735-1 DOI: https://doi.org/10.1038/s41598-019-55735-1
Mochida N, Matsumura Y, Kitabatake M, Ito T, Kayano SI, Kikuzaki H. Antioxidant Potential of Non-Extractable Fractions of Dried Persimmon (Diospyros kaki Thunb.) in Streptozotocin-Induced Diabetic Rats. Antioxidants. 2022; 11(8):1555. doi:10.3390/antiox11081555 DOI: https://doi.org/10.3390/antiox11081555
Ressaissi A, Mannai A, Ben-Attia M, Serralheiro ML, El-Bok S. Diospyros Kaki Leaves Decoction Phytochemical Characterization and Bioactivities Evaluation: LC-MS-Qtof Identification, Antioxidant Activity, Enzyme Inhibition and Cytotoxicity Toward HepG2 and Mcf-7 Cell Lines. Research Square. 2021. doi:10.21203/rs.3.rs-1134471/v1 DOI: https://doi.org/10.21203/rs.3.rs-1134471/v1
Kwon J, Park JE, Lee JS, Lee JH, Hwang H, Jung SH, Kwon HC, Jang DS. Chemical Constituents of the Leaves of Diospyros kaki (Persimmon). Plants. 2021; 10(10):2023. doi:10.3390/plants10102032 DOI: https://doi.org/10.3390/plants10102032


