Optimization of Dried Nutmeg Leaf Compost on the Growth and Productivity of Red Potatoes (Solanum tuberosum L.) in the Highlands
Main Article Content
Abstract
The red potato (Solanum tuberosum L.) is a pivotal horticultural crop contributing to global food security. However, its sustainable production is challenged by overdependence on chemical fertilizers and the underutilization of local organic resources. In regions like North Maluku, Indonesia, nutmeg leaf waste remains largely unused despite its potential as an organic soil amendment. This study aims to assess the effect of various doses of compost fertilizer derived from dried nutmeg (Myristica fragrans) leaves on the growth and yield of red potato plants. The treatments included five compost doses: K0 (control, no compost), K1 (100 g/plant), K2 (200 g/plant), K3 (300 g/plant), and K4 (400 g/plant). Growth and yield parameters observed were plant height, number of shoots, number of tubers per sample and plot, and tuber weight per sample and plot. Results showed that dried nutmeg leaf compost significantly influenced plant performance, especially during weeks 7 and 8 after planting. The highest productivity was observed in treatment K4, with a plant height of 28.6 cm, increased shoot formation, an average of 84 tubers per plot, and a tuber weight of 840 g per plot. Statistical analysis supports the potential of dried nutmeg leaf compost as a sustainable, eco-friendly organic fertilizer that enhances red potato productivity.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
⦁ Zhang H, Xu F, Wu Y, Hu H, Dai X. Progress of potato staple food research and industry development in China. J. Integr Agric. 2017; 16(2):2924–2932. Doi: http://dx.doi.org/10.1016/S2095-3119(17)61736-2. DOI: https://doi.org/10.1016/S2095-3119(17)61736-2
⦁ Lal P, Tiwari RK, Behera B, Yadav MR, Sharma E, Altaf MA, Jena R, Ahmad A, Dey A, Kumar A, Singh B, Lal MK, Kumar R. Exploring potato seed research: a bibliometric approach towards sustainable food security. Front. Sustainable Food Syst. 2023; 7: 1229272. Doi: https://doi.org/10.3389/fsufs.2023.1229272 DOI: https://doi.org/10.3389/fsufs.2023.1229272
⦁ Mijena GM, Gedebo A, Beshir HM, Haile A. Ensuring food security of smallholder farmers through improving productivity and nutrition of potato. J. Agric Food Res. 2022; 10:1–12. Doi: https://doi.org/10.1016/j.jafr.2022.100400. DOI: https://doi.org/10.1016/j.jafr.2022.100400
⦁ FAO. Production Quantities of Potatoes by Country. FAOSTAT Statistical Database. 2019.
⦁ Zaheer K, Akhtar MH. Potato production, usage, and nutrition—A Review. Crit Rev Food Sci Nutr. 2014; 56:711–721. Doi: https://doi.org/10.1080/ 10408398.2012.724479. DOI: https://doi.org/10.1080/10408398.2012.724479
⦁ Reyniers S, Ooms N, Gomand SV, Delcour JA. What makes starch from potato (Solanum tuberosum L.) tubers unique: A review. Compr Rev Food Sci Food Saf. 2020; 19(5):2588–2612. Doi: https://doi.org/10.1111/1541- 4337.12596 DOI: https://doi.org/10.1111/1541-4337.12596
⦁ Carr AC, Maggini S. Vitamin C and immune function. Nutrients. 2017; 9(11):1211. Doi: https://doi.org/10.3390/nu9111211 DOI: https://doi.org/10.3390/nu9111211
⦁ Bnv P, Gvs S. Potato Powerhouse for many nutrients. Potato Res. 2023; 66(3):563–580. Doi: https://doi.org/10.1007/s11540-022-09589-2 DOI: https://doi.org/10.1007/s11540-022-09589-2
⦁ Sahani G, Ghadage P, Raj AS, Prakash A, Mohammed F. Solanum tuberosum L.: A review on traditional use, phytochemistry, pharmacological aspects, and health benefits. Ann. Phytomed. 2023; 12(2):339–345. Doi: https://doi.org/10.54085/ap.2023.12.2.43 DOI: https://doi.org/10.54085/ap.2023.12.2.43
⦁ Sun C, Zhou J, Ma Y, Xu Y, Pan B, Zhang Z. A review of remote sensing for potato traits characterization in precision agriculture. Front Plant Sci. 2022; 13:871859. Doi: https://doi.org/10.3389/fpls.2022.871859 DOI: https://doi.org/10.3389/fpls.2022.871859
⦁ Chabani H, Tarchoun N, Amami R, Saadaoui W, Mezghani N, Petropoulos SA. Investigating the effects of optimized mineral fertilization on plant growth, physiological traits, tuber yield, and biochemical contents of potato crop. Horticulturae. 2025; 11(1):11. Doi: https://doi.org/10.3390/horticulturae11010011 DOI: https://doi.org/10.3390/horticulturae11010011
⦁ Sayara T, Salimia B, Hawamde R, Sanchez FA. Recycling of organic wastes through composting: Process performance and compost application in agriculture. Agronomy 2020; 10(11):1838. Doi: https://doi.org/10.3390/agronomy10111838 DOI: https://doi.org/10.3390/agronomy10111838
⦁ Spence C. Nutmeg and mace: The sweet and savoury spices. Int J. Gastron. Food Sci. 2024; 36:100936. Doi: https://doi.org/10.1016/j.ijgfs.2024.100936. DOI: https://doi.org/10.1016/j.ijgfs.2024.100936
⦁ Adibuduge Y, Senevirathne M. Potential of Nutmeg (Myristica fragrans Houtt) Leaf Extracts as a Source of Functional Ingredients with Antibacterial, Antifungal and Antioxidant Activities. J. Agric Sci. 2024; 18(2):221–236. https://doi.org/10.4038/jas.v18i2.10255 DOI: https://doi.org/10.4038/jas.v18i2.10255
⦁ Muhie SH. Physiological, growth and yield response of potato (Solanum tuberosum l.) To heat stress. Potato J. 2022; 49(1):104-115.
⦁ Tamad, Soetanto L, Karim AR. Use of biological organic fertilizers and pesticides to improve potato cultivation in slope andisols. Biotropia. 2023; 30(2):232–241. Doi: https://doi.org/10.11598/btb.2023.30.2.1902 DOI: https://doi.org/10.11598/btb.2023.30.2.1902
⦁ Massiseng ANA, Tuwo A, Fachry ME, Bahar A. Characteristics of plastic waste and perceptions of coastal communities in the MLC Baluno mangrove ecotourism area, West Sulawesi, Indonesia. Biodiversitas. 2022; 23(12):6262–6274. Doi: https://doi.org/10.13057/biodiv/d231222 DOI: https://doi.org/10.13057/biodiv/d231222
⦁ Hartmann M, Six J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 2023; 4:4–18. Doi: https://doi.org/10.1038/s43017-022- 00366-w. DOI: https://doi.org/10.1038/s43017-022-00366-w
⦁ Cui JW, Yang BG, Zhang ML, Song DL, Xu XP, Ai C, Liang GQ, Zhou W. Investigating the effects of organic amendments on soil microbial composition and its linkage to soil organic carbon: a global meta-analysis. Sci. Total Environ. 2023; 894:164899. Doi: https://doi.org/10.1016/j.scitotenv.2023.164899. DOI: https://doi.org/10.1016/j.scitotenv.2023.164899
⦁ Anning DK, Ghanney P, Qiu H, Zhang C, Zhang Y. Agronomic and physiological response of potato (Solanum tuberosum L.) to nitrogen fertilization rate on a loess soil of Northwest China. Potato Res. 2023; 66:621–640. Doi: https://doi.org/10.1007/s11540-022-09592-7 DOI: https://doi.org/10.1007/s11540-022-09592-7
⦁ Koch M, Naumann M, Pawelzik E, Gransee A, Thiel H. The importance of nutrient management for potato production part I: plant nutrition and yield. Potato Res. 2020; 63:97–119. Doi: https://doi.org/10.1007/s11540-019-09431-2. DOI: https://doi.org/10.1007/s11540-019-09431-2
⦁ Daadi BE, Lohmann LU. Organic fertilizer used by smallholder farmers: typology of management approaches in northern Ghana. Renew Agric Food Syst. 2021; 36:192–206. Doi: doi: 10.1017/S1742170520000228 DOI: https://doi.org/10.1017/S1742170520000228
⦁ Soeprobowati TR, Jumari J, Saraswati TR, Suhry HC, Gell PGH. Land-use changes concerning the riparian vegetation in Galela Lake, North Maluku, Indonesia. Ecological Engineering. 2021; 170: 106368. Doi: https://doi.org/10.1016/j.ecoleng.2021.106368 DOI: https://doi.org/10.1016/j.ecoleng.2021.106368
⦁ Gaspersz V. Applied Statistics for Experimental Research. Gramedia Pustaka Utama, Jakarta. 2019.
⦁ An XR, Jiang ST, Xie CY, Xu YC, Dong CX, Shen QR. Effects of reducing chemical fertilizers combined with organic fertilizers on soil microbial community in litchi orchards. Ying Yong Sheng Tai Xue Bao. 2022; 33(4):1099-1108. Doi: https://doi.org/10.13758/j.cnki.tr.2021.06.010.
⦁ Ball M, Ramirez HG. Nitrous oxide emissions and yields from potato production systems as influenced by nitrogen fertilization and irrigation: A meta-analysis. Agronomy J. 2025; 117:e21720. Doi: https://doi.org/10.1002/agj2.21720 DOI: https://doi.org/10.1002/agj2.21720
⦁ Chen HJ, Zhao S, Zhao JM, Zhang KK, Jiang J, Guan ZY, Chen SM, Chen FD, Fang WM. Deep tillage combined with biofertilizer following soil fumigation improved Chrysanthemum growth by regulating the soil microbiome. Microbiology Open. 2020; 7(9):e1045. Doi: https://doi.org/10.1002/mbo3.1045. DOI: https://doi.org/10.1002/mbo3.1045
⦁ Griffiths M, Atkinson JA, Gardiner LJ, Swarup R, Pound MP, Wilson MH, Bennett MJ, Wells DM. Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat. J. Integr. Agric. 2022; 21:917–932. Doi: https://doi.org/10.1016/s2095-3119(21)63700-0. DOI: https://doi.org/10.1016/S2095-3119(21)63700-0
⦁ Gemmechu GE. Effects of spacing on the yield and yield related parameters of potato (Solanum tuberosum l.) At bale highland. J Plant Sci Agri Res. 2021; 5(1):55.
⦁ Luo HH, Tao XP, Hu YY, Zhang YL, Zhang WF. Response of cotton root growth and yield to root restriction under various water and nitrogen regimes. J. Plant Nutr. Soil Sci. 2015; 178:384–392. Doi: 10.1002/jpln.201400264 DOI: https://doi.org/10.1002/jpln.201400264
⦁ Garg N, Choudhary OP, Thaman S, Sharma V, Singh H, Vashistha M, Sekhon KS, Sharda R, Dhaliwal MS. Effects of irrigation water quality and NPK fertigation levels on plant growth, yield and tuber size of potatoes in a sandy loam alluvial soil of semi-arid region of Indian Punjab. Agric Water Manag. 2022; 266:107604. Doi: https://doi.org/10.1016/j.agwat.2022.107604. DOI: https://doi.org/10.1016/j.agwat.2022.107604
⦁ Djaman K, Koudahe K, Essah S, Shanwad UK. Critical nitrogen dilution curves for nitrogen management in potato (Solanum tuberosum L.): A minireview. Potato Res. 2025; 102:107–118. Doi: https://doi.org/10.1007/s12230-025-09984-8. DOI: https://doi.org/10.1007/s12230-025-09984-8
⦁ Muleta HD, Aga MC. Role of Nitrogen on Potato Production: A Review. J. Plant Sci. 2019; 7(2): 36–42. https://doi.org/10.11648/j.jps.20190702.11
⦁ Ning L, Xu X, Qiu S, Lei Q, Zhang Y, Luo J, Ding W, Zhao S, He P, Zhou W. Balancing potato yield, soil nutrient supply, and nitrous oxide emissions: an analysis of nitrogen application trade-offs. Sci. Total Environ. 2023; 899:165628. Doi: https:// doi.org/10.1016/j.scitotenv.2023.165628. DOI: https://doi.org/10.1016/j.scitotenv.2023.165628
⦁ Zhang Z, Dong X, Wang S, Pu X. Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang, China. Sci. Rep. 2020; 10:1–10. Doi: https://doi.org/10.1038/s41598- 020-61118-8. DOI: https://doi.org/10.1038/s41598-020-61118-8
⦁ Xuan W, Beeckman T, Xu G. Plant nitrogen nutrition: sensing and signaling. Curr. Opin. Plant Biol. 2017; 39:57–65. Doi: https://doi.org/10.1016/j.pbi.2017.05.010. DOI: https://doi.org/10.1016/j.pbi.2017.05.010
⦁ Rosales SJE, Villa PM, Rada F. Efects of nitrogen fertilization on the photosynthesis and biomass distribution in a potato crop. Peruvian J. Agron. 2020; 4(2):68–74. Doi: http://dx.doi.org/10.21704/pja.v4i2.1571 DOI: https://doi.org/10.21704/pja.v4i2.1571
⦁ Lagos BJ, Guerrero JM, Herrera AJ. Growth and yield of potatoes cultivated in different planting methods under greenhouse and open field conditions. Brazilian J Agric Environ Eng. 2025; 29(8):e287826:1–9. Doi: http://dx.doi.org/10.1590/1807-1929/agriambi.v29n8e287826 DOI: https://doi.org/10.1590/1807-1929/agriambi.v29n8e287826
⦁ Xu P, Shu L, Li Y, Zhou S, Zhang G, Wu Y, Yang Z. Pretreatment and composting technology of agricultural organic waste for sustainable agricultural development. Heliyon 2023; 9(5): e16311. Doi: https://doi.org/10.1016/j.heliyon.2023.e16311 DOI: https://doi.org/10.1016/j.heliyon.2023.e16311
⦁ El-Ghamry AM, El-Sherpiny MA, Alkharpotly AA, Ghazi DA, Helmy AA, Siddiqui MH, Pessarakli M, Hossain MA, Elghareeb EM. The synergistic effects of organic composts and microelements co-application in enhancing potato productivity in saline soils, Heliyon. 2024; 10(12): e32694. Doi: https://doi.org/10.1016/j.heliyon.2024.e32694. DOI: https://doi.org/10.1016/j.heliyon.2024.e32694
⦁ Byeon S, Song W, Park M, Kim S, Kim S, Lee HT. Down-regulation of photosynthesis and its relationship with changes in leaf N allocation and N availability after long-term exposure to elevated CO2 concentration. J. Plant Physiol. 2021; 265:153489. Doi: 10.1016/j.jplph.2021.153489 DOI: https://doi.org/10.1016/j.jplph.2021.153489
⦁ Torabian S, Abriz FR, Noulas QC, Sathuvalli V, Charlton B, Loka DA. Potassium: a vital macronutrient in potato production-a review. Agronomy 2021; 11:543. Doi: https://doi.org/10.3390/agronomy11030543. DOI: https://doi.org/10.3390/agronomy11030543
⦁ Shakoor A, Shakoor S, Rehman A, Ashraf F, Abdullah M, Shahzad SM, Farooq TH, Ashraf M, Manzoor A, Altaf MM, Altaf MA. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils-a global meta-analysis. J. Clean Prod. 2021; 278:124019. Doi: https://doi. org/10.1016/j.jclepro.2020.124019 DOI: https://doi.org/10.1016/j.jclepro.2020.124019
⦁ Arif M, Ilyas M, Ali K, Shah K, Ul Haq I, Fahad S. Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity, and soil quality in a low fertility alkaline soil. Field Crop Res. 2017; 214:25–37. Doi: https://doi.org/10.1016/j.fcr.2017.08.018. DOI: https://doi.org/10.1016/j.fcr.2017.08.018
⦁ Asaye Z, Kim DG, Yimer F, Prost K, Obsa O, Tadesse M, Gebrehiwot M, Bruggemann N. Effects of combined application of compost and mineral fertilizer on soil carbon and nutrient content, yield, and agronomic nitrogen use efficiency in maize-potato cropping systems in Southern Ethiopia. Land. 2022; 11(6):784. Doi: https://doi.org/10.3390/land11060784 DOI: https://doi.org/10.3390/land11060784
⦁ Raigond P, Rawal S, Parmar V. Nutritional, Processing and Sensorial Attributes of Organic and Inorganic Indian Potatoes. Potato Res. 2022; 65:1051–1073. Doi: https://doi.org/10.1007/s11540-022-09564-x DOI: https://doi.org/10.1007/s11540-022-09564-x
⦁ Aytenew M, G Bore. Effects of organic amendments on soil fertility and environmental quality: A review. J Plant Sci. 2020; 8(5):112–119. Doi: 10.11648/j.jps.20200805.12 DOI: https://doi.org/10.11648/j.jps.20200805.12
⦁ Waliullah M, Mu T, Ma M. Recovery of total, soluble, and insoluble dietary fiber from potato (Solanum tuberosum) residues and comparative evaluation of their structural, physicochemical, and functional properties. J. Food Process Preserv. 2021; 45(7): e15650. Doi: https://doi.org/10.1111/jfpp.15650 DOI: https://doi.org/10.1111/jfpp.15650
⦁ Li Y, Wang Y, Ma A, Liang Y, Zhu Y, Feng D. Water footprint of potato production based on crop water consumption in Guyuan, Ningxia Province. J. Water Resour Protect. 2021; 32:240.
⦁ Rady MM, Semida WM, Hemida KA, Abdelhamid MT. The effect of compost on growth and yield of Phaseolus vulgaris plants grown under saline soil. Int J Recycl Org Waste Agricult. 2016; 5:311–321. Doi: https://doi.org/10.1007/s40093-016-0141-7 DOI: https://doi.org/10.1007/s40093-016-0141-7
⦁ Sosnowski J, Truba M, Vasileva V. The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture. 2023; 13(3):724. Doi: https://doi.org/10.3390/agriculture13030724 DOI: https://doi.org/10.3390/agriculture13030724
⦁ Deepanjan M, Ishita P, Ayan D, Iravati R, Antara D, Madhurima J, Roy CN, Singh BBP, Tarit R. Rice seed (IR64) priming with potassium humate for improvement of seed germination, seedling growth and antioxidant defense system under arsenic stress. Ecotoxicol. Environ. Saf. 2021;219:1–10. Doi: https://doi.org/10.1016/ J.ECOENV.2021.112313. DOI: https://doi.org/10.1016/j.ecoenv.2021.112313
⦁ Tan K, Wang S, Song Y, Liu Y, Gong Z. Estimating nitrogen status of rice canopy using hyperspectral reflectance combined with BPSO-SVR in cold region. Chemom Intell Lab Syst. 2018; 172:68–79. Doi: https://doi.org/10.1016/j.chemolab.2017.11.014 DOI: https://doi.org/10.1016/j.chemolab.2017.11.014
⦁ Netzer F, Herschbach C, Oikawa A, Okazaki Y, Dubbert D, Saito K, Rennenberg H. Seasonal alterations in organic phosphorus metabolism drive the phosphorus economy of annual growth in F. sylvatica trees on pimpoverished soil. Front. Plant Sci. 2018; 9:1–20. Doi: https://doi.org/10.3389/fpls.2018.00723 DOI: https://doi.org/10.3389/fpls.2018.00723
⦁ Lambers H. Phosphorus Acquisition and Utilization in Plants. Annu. Rev Plant Biol. 2022; 73:17–42. Doi: https://doi.org/10.1146/annurev-arplant-102720-125738. DOI: https://doi.org/10.1146/annurev-arplant-102720-125738
⦁ Zhang L, Shi G, Yu Y, Li M, Su G, Jia X. Alleviating obstacles of continuous cropping in Lanzhou lily by soil fumigation combined with microbial fertilizer. J. Desert Res. 2020; 40:169–179. Doi: https://doi.org/10.7522/j.issn.1000-694X.2020.00069
⦁ Dulaimi SAH, Ahmed RM, Khayri MA, Rahmatullah SHA, Ajmi RN. The Effect of environmental factors on plant growth: an analytical study of environmental variables and their physiological response /A Review Article. The Peerian Journal. 2025; 40:1–8. Doi: https://doi.org/10.7522/j.issn.1000-694X.2020.00069
⦁ Hu W, Lu Z, Meng F, Li X, Cong R, Ren T, Sharkey TD, Lu J. The reduction in leaf area precedes that in photosynthesis under potassium deficiency: the importance of leaf anatomy. New Phytol. 2020; 227(6):1749–1763. Doi: https://doi.org/10.1111/nph.16644 DOI: https://doi.org/10.1111/nph.16644
⦁ Yu Y, Zhang Q, Kang J, Xu N, Zhang Z, Deng Y, Gillings M, Lu T, Qian H. Effects of organic fertilizers on plant growth and the rhizosphere microbiome. Appl Environ Microbiol. 2024; 90(2): e01719‑23. Doi: https://doi.org/10.1128/aem.01719‑23 DOI: https://doi.org/10.1128/aem.01719-23
⦁ Ye X, Gao Z, Xu K, Li B, Ren T, Li X, Cong R, Lu Z, Cakmak I, Lu J. Photosynthetic plasticity aggravates the susceptibility of magnesium-deficient leaf to high light in rapeseed plants: the importance of Rubisco and mesophyll conductance. Plant J. 2023; 117:483–497. Doi: https://doi.org/10.1111/tpj.16504. DOI: https://doi.org/10.1111/tpj.16504
⦁ Greer DH. Photosynthetic responses to CO2 at different leaf temperatures in leaves of apple trees (Malus domestica) grown in orchard conditions with different levels of soil nitrogen. Environ Exp Bot. 2018; 155:56–65. Doi: https://doi.org/10.1016/j. envexpbot.2018.06.014 DOI: https://doi.org/10.1016/j.envexpbot.2018.06.014
⦁ Zhang X, Hu H, Li F, Huang L, Bao W. Within leaf nitrogen allocation regulates the photosynthetic behavior of xerophytes in response to increased soil rock fragment content. Plant Physiol Biochem. 2023; 200:1–11. Doi: https://doi.org/10.1016/j. plaphy.2023.107753. DOI: https://doi.org/10.1016/j.plaphy.2023.107753
⦁ Dahal K, Gervais T. Enhancement of photosynthetic performance, water use efficiency, and potato yield under elevated CO2 is cultivar dependent. Front Plant Sci. 2023; 14:1287825. Doi: https://doi.org/10.3389/fpls.2023.1287825 DOI: https://doi.org/10.3389/fpls.2023.1287825
⦁ Wang X, Zhao S, Xu X, Liu M, Jiang R, Zhang J, Duan Y, He P, Zhou W. Response of soil microbial properties in the life cycle of potatoes to organic substitution regimes in North China. Soil Tillage Res. 2024; 237:106000. Doi: https://doi.org/ 10.1016/j.still.2024.106000. DOI: https://doi.org/10.1016/j.still.2024.106000
⦁ Shu X, He J, Zhou Z, Xia L, Hu Y, Yulin Z, Yanyan Z, Luo Y, Chu H, Liu W, Yuan S, Gao X, Wang C. Organic amendments enhance soil microbial diversity, microbial functionality, and crop yields: a meta-analysis. Sci. Total Environ. 2022; 829:154627. Doi: https://doi.org/10.1016/j.scitotenv.2022.154627. DOI: https://doi.org/10.1016/j.scitotenv.2022.154627
⦁ Ren DY, Ding CQ, Qian Q. Molecular bases of rice grain size and quality for optimized productivity. Sci Bull. 2023; 68(3):314–350. Doi: https://doi.org/10.1111/1541- 4337.12596 DOI: https://doi.org/10.1016/j.scib.2023.01.026
⦁ Gao H, McCormick AJ, Lu Y. Editorial: structure and function of chloroplasts. Front Plant Sci. 2023; 14:1145680. Doi: https://doi.org/10.3389/fpls.2023.1145680 DOI: https://doi.org/10.3389/fpls.2023.1145680


