Polymethylmethacrylate-Hydroxyapatite (PMMA-HA) Increased Osteogenesis via a Stimulation of BMP-2 and FGF-2 Expression in Experimental Rats (Rattus norvegicus)
Main Article Content
Abstract
Polymethylmethacrylate (PMMA) has been used for a long time as an implant material in orthopaedic surgery. PMMA lacks the bioactivity necessary for effective osseointegration. Unlike PMMA, hydroxyapatite (HA) offers better osteoconductive, bioactive, and biocompatible properties. HA can be derived from limestone (CaCO3) through processing at Balai Besar Keramik (BBK) or from bovine bone following the Good Manufacturing Practice (GMP). This study aimed to evaluate the osteogenic potential of PMMA-HA implants by analyzing bone morphogenetic protein 2 (BMP-2) and fibroblast growth factor 2 (FGF-2) expression in a rat bone model. The study consisted of six groups: a control group for 7 days, a control group for 14 days, PMMA-HA (BBK) group for 7 days, PMMA-HA (BBK) group for 14 days, PMMA-HA (GMP) group for 7 days, and PMMA-HA (GMP) group for 14 days were implanted into the femurs of the rats at a ratio of 83.8:16.2. Immunohistochemical assays were conducted on days 7 and 14 to assesses FGF-2 and BMP-2expression levels. The expression of FGF-2 and BMP-2 was elevated at 7 and 14 days after implanting PMMA-HA (BBK) and PMMA-HA (GMP) into the femur of Wistar Rats. The application of PMMA-HA (BBK) and PMMA-HA (GMP) into the femur of Wistar Rat resulted in an upregulation of FGF-2 and BMP-2 expression, suggesting that this biomaterial has the potential to enhance bone regeneration by promoting osteogenesis.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Zambonin G, Colucci S, Cantatore F, Grano M. Response of Human Osteoblasts to Polymethylmetacrylate In Vitro. Calcif Tissue Int. 1998; 62(4):362-365. doi:10.1007/s002239900445 DOI: https://doi.org/10.1007/s002239900445
Afiqah IQ, Aziz NAN, Nurhaziqah AMS, Hasiah S. Biocompatible Hydroxyapatite Derive from Selayang Fish Bone Via Mechanochemical Treatment. Solid State Phenom. 2020; 307:339-344. doi:10.4028/WWW.SCIENTIFIC.NET/SSP.307.339 DOI: https://doi.org/10.4028/www.scientific.net/SSP.307.339
Darjanki CM, Prahasanti C, Fitria AE, Kusumawardani B, Wijaksana IKE, Aljunaid M. RUNX2 and ALP Expression in Osteoblast Cells Exposed by PMMA-HAp Combination: An In Vitro Study. J Oral Biol Craniofac Res. 2023; 13(2):277. doi:10.1016/J.JOBCR.2023.02.007 DOI: https://doi.org/10.1016/j.jobcr.2023.02.007
Saskianti T, Novianti A, Sahar D, Nugraha AP, Putri TS, Kanawa M, Puteri MM, Dewi AM, Ernawati DS. Mixed Polymethylmethacrylate and Hydroxyapatite as a Candidate of Synthetic Graft Materials for Cleft Palate. J Int Dent Med Res. 2022; 15(2):538-543.
Saskianti T, Purnamasari S, Pradopo S, Nugraha AP, Prahasanti C, Ernawati DS, Kanawa M. The Effect of Mixed Polymethylmethacrylate and Hydroxyapatite on Viability of Stem Cell from Human Exfoliated Deciduous Teeth and Osteoblast. Eur J Dent. 2023; 18(1):314. doi:10.1055/S-0043-1768971 DOI: https://doi.org/10.1055/s-0043-1768971
Ayu Pridanti K, Cahyaraeni F, Harijanto E, Rianti D, Kristanto W, Damayanti H, Setiana Putri T, Dinaryanti A, Karsari D, Yuliati A. Characteristics and Cytotoxicity of Hydroxyapatite from Padalarang–Cirebon Limestone as Bone Grafting Candidate. Biochem Cell Arch. 2020; 20(2):4727-4731. Available from: https://connectjournals.com/03896.2020.20.4727
Phakatkar AH, Shirdar MR, Qi ML, Taheri MM, Narayanan S, Foroozan T, Sharifi-Asl S, Huang Z, Agrawal M, Lu YP, Shahbazian-Yassar R, Shokuhfar T. Novel PMMA Bone Cement Nanocomposites Containing Magnesium Phosphate Nanosheets and Hydroxyapatite
Nanofibers. Mater Sci Eng C Mater Biol Appl. 2020; 109:110497. doi:10.1016/J.MSEC.2019.110497 DOI: https://doi.org/10.1016/j.msec.2019.110497
Hienz SA, Paliwal S, Ivanovski S. Mechanisms of Bone Resorption in Periodontitis. J Immunol Res. 2015; 2015:615486. doi:10.1155/2015/615486 DOI: https://doi.org/10.1155/2015/615486
Farhadieh RD, Gianoutsos MP, Yu Y, Walsh WR. The Role of Bone Morphogenetic Proteins BMP-2 and BMP-4 and Their Related Postreceptor Signaling System (Smads) in Distraction Osteogenesis of the Mandible. J Craniofac Surg. 2004; 15(5):714-718.
doi:10.1097/00001665-200409000-00003 DOI: https://doi.org/10.1097/00001665-200409000-00003
Murakami S. Periodontal Tissue Regeneration by Signaling Molecule(s): What Role Does Basic Fibroblast Growth Factor (FGF-2) Have in Periodontal Therapy? Periodontol 2000. 2011; 56(107):188-208. DOI: https://doi.org/10.1111/j.1600-0757.2010.00365.x
Retnam L, Chatikavanij P, Kunjara P, Paramastri YA, Goh YM, Hussein FN, Mutalib AR, Poosala S. Laws, Regulations, Guidelines and Standards for Animal Care and Use for Scientific Purposes in the Countries of Singapore, Thailand, Indonesia, Malaysia, and India. ILAR J. 2016; 57(3):312-323. doi:10.1093/ILAR/ILW038 DOI: https://doi.org/10.1093/ilar/ilw038
Sheikh Z, Javaid MA, Hamdan N, Hashmi R. Bone Regeneration Using Bone Morphogenetic Proteins and Various Biomaterial Carriers. Materials. 2015; 8(4):1778. doi:10.3390/MA8041778 DOI: https://doi.org/10.3390/ma8041778
Coracini KF, Fernandes CJ, Barbarini AF, Silva CM, Scabello RT, Oliveira GP, Chadi G. Differential Cellular FGF-2 Upregulation in the Rat Facial Nucleus Following Axotomy, Functional Electrical Stimulation and Corticosterone: A Possible Therapeutic Target to Bell’s Palsy.
J Brachial Plex Peripher Nerve Inj. 2010; 5(1):16. doi:10.1186/1749-7221-5-16 DOI: https://doi.org/10.1186/1749-7221-5-16
da Silva de Oliveira JC, Luvizuto ER, Sonoda CK, Okamoto R, Garcia-Junior IR. Immunohistochemistry Evaluation of BMP-2 With β-Tricalcium Phosphate Matrix, Polylactic and Polyglycolic Acid Gel, and Calcium Phosphate Cement in Rats. Oral Maxillofac Surg. 2017; 21(2):247-258. doi:10.1007/S10006-017-0624-3 DOI: https://doi.org/10.1007/s10006-017-0624-3
Radha G, Balakumar S, Venkatesan B, Vellaichamy E. A Novel Nano-Hydroxyapatite - PMMA Hybrid Scaffolds Adopted by Conjugated Thermal Induced Phase Separation (TIPS) and Wet-Chemical Approach: Analysis of Its Mechanical and Biological Properties. Mater Sci Eng C Mater Biol Appl. 2017; 75:221-228. doi:10.1016/j.msec.2016.12.133 DOI: https://doi.org/10.1016/j.msec.2016.12.133
Prahasanti C, Krismariono A, Takanamita R, Wijaksana IKE, Suardita K, Saskianti T, Ernawati DS. Enhancement of Osteogenesis Using a Combination of Hydroxyapatite and Stem Cells from Exfoliated Deciduous Teeth. J Int Dent Med Res. 2020; 13(2):508-512.
Hao CP, Cao NJ, Zhu YH, Wang W. The Osseointegration and Stability of Dental Implants with Different Surface Treatments in
Animal Models: A Network Meta-Analysis. Sci Rep. 2021; 1-12. doi:10.1038/s41598-021-93307-4 DOI: https://doi.org/10.1038/s41598-021-93307-4
Pandey C, Rokaya D, Bhattarai BP. Contemporary Concepts in Osseointegration of Dental Implants: A Review. Biomed Res Int. 2022; 2022:6170452. doi:10.1155/2022/6170452 DOI: https://doi.org/10.1155/2022/6170452
Wu M, Chen G, Li YP. TGF-β and BMP Signaling in Osteoblast, Skeletal Development, and Bone Formation, Homeostasis and Disease. Bone Res. 2016; 4(1):1-21. doi:10.1038/boneres.2016.9
Faßbender M, Minkwitz S, Strobel C, Schmidmaier G, Wildemann B. Stimulation of Bone Healing by Sustained Bone Morphogenetic Protein 2 (BMP-2) Delivery. Int J Mol Sci. 2014; 15(5):8539. doi:10.3390/IJMS15058539 DOI: https://doi.org/10.3390/ijms15058539
Novais A, Chatzopoulou E, Chaussain C, Gorin C, Département A hp, Pitié Salpêtrière G, Mondor H, Nord P, Rothschild H. The Potential of FGF-2 in Craniofacial Bone Tissue Engineering: A Review. Cells. 2021. doi:10.3390/cells10040932 DOI: https://doi.org/10.3390/cells10040932
Carmagnola D, Pellegrini G, Dellavia C, Rimondini L, Varoni E. Tissue Engineering in Periodontology: Biological Mediators for Periodontal Regeneration. Int J Artif Organs. 2019; 42(5):241-257. doi:10.1177/0391398819828558 DOI: https://doi.org/10.1177/0391398819828558
Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, Jang JH, Shin US, Kim HW. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration. J Tissue Eng. 2010; 1(1):1-18. doi:10.4061/2010/218142 DOI: https://doi.org/10.4061/2010/218142
Hou X, Zhang L, Zhou Z, Luo X, Wang T, Zhao X, Lu B, Chen F, Zheng L. Calcium Phosphate-Based Biomaterials for Bone Repair. J Funct Biomater. 2022; 13(4):187. doi:10.3390/JFB13040187 DOI: https://doi.org/10.3390/jfb13040187
Pridanti KA, Cahyaraeni F, Harijanto E, Soebagijo, Rianti D, Wahyudi Kristanto, Damayanti H, Putri TS, Dinaryanti A, Karsari D, Yuliati A. Characteristics and Cytotoxicity of Hydroxyapatite from Padalarang–Cirebon Limestone as Bone Grafting Candidate. Mater Sci Forum. 2020; 996:4727-4731.
Manalu JL, Soegijono B, Indrani DJ. Characterization of Hydroxyapatite Derived from Bovine Bone. Asian J Appl Sci. 2015; 3(4):758-765.
Bano N, Salwah Jikan S, Basri H, Adzila Abu Bakar SS, Hussain Nuhu A. Natural Hydroxyapatite Extracted from Bovine Bone. J Sci Technol (Kota Kinabalu). 2017; 9(2):22-28.
Rianti D, Kristanto W, Damayanti H, Putri TS, Dinaryanti A, Syahrom A, Yuliati A. The Characteristics and Potency of Limestone-Based Carbonate Hydroxyapatite to Viability and Proliferation of Human Umbilical Cord Mesenchymal Stem Cell. Res J Pharm Technol. 2022; 15(5):2285-2292. doi:10.52711/0974-360X.2022.00380 DOI: https://doi.org/10.52711/0974-360X.2022.00380
Aquino-Martínez R, Artigas N, Gámez B, Rosa JL, Ventura F. Extracellular Calcium Promotes Bone Formation from Bone Marrow Mesenchymal Stem Cells by Amplifying the Effects of BMP-2 on SMAD Signalling. PLoS One. 2017; 12(5):e0178158.
doi:10.1371/journal.pone.0178158 DOI: https://doi.org/10.1371/journal.pone.0178158
Kanaya S, Nemoto E, Sakisaka Y, Shimauchi H. Calcium-Mediated Increased Expression of Fibroblast Growth Factor-2 Acts Through NF-κB and PGE2/EP4 Receptor Signaling Pathways in Cementoblasts. Bone. 2013; 56(2):398-405. doi:10.1016/j.bone.2013.06.031 DOI: https://doi.org/10.1016/j.bone.2013.06.031
Wu M, Chen G, Li YP. TGF-β and BMP Signaling in Osteoblast, Skeletal Development, and Bone Formation, Homeostasis and Disease. Bone Res. 2016; 4(1):1-21. doi:10.1038/boneres.2016.9 DOI: https://doi.org/10.1038/boneres.2016.9


