HPLC/MS Characterization and Evaluation of the Antioxidant and Anti-Inflammatory Properties of Algerian Medicinal Plant: Carthamus caeruleus L. Extracts
Main Article Content
Abstract
Carthamus caeruleus L. (Asteraceae) has been traditionally recognized for its wound-healing, anti-inflammatory, and burn-relieving properties. The present study investigates the phytochemical composition, antioxidant potential, and anti-inflammatory activity of hydromethanolic and chloroformic extracts derived from its rhizomes. The hydromethanolic extract exhibited higher total phenolic content (138.07 ± 0.15 µg GAE/mg) and flavonoid concentration (35.87 ± 0.02 µg QE/mg). Phytochemical analysis using liquid chromatography coupled with mass spectrometry identified key compounds including feruloylquinic acid, dihydro-p-coumaric acid glucoside, and a ferulic acid derivative (isomer I). Antioxidant activity was assessed via lipid peroxidation inhibition, cellular antioxidant activity, hydrogen peroxide scavenging, and total antioxidant capacity. The hydromethanolic extract demonstrated strong lipid peroxidation inhibition (IC₅₀ = 1.47 ± 0.17 mg/mL), high total antioxidant capacity (100.01 ± 0.09 µg GAE/mg), moderate cellular antioxidant activity (12.49 ± 1.13%), and hydrogen peroxide scavenging at 450 µg/mL.Anti-inflammatory activity was evaluated in vitro using LPS-stimulated RAW 264.7 macrophages and in vivo through carrageenan-induced paw edema in mice. The extract inhibited nitric oxide production (IC₅₀ = 161 ± 0.36 µg/mL), reduced erythrocyte hemolysis (83.09 ±0.45 %), and protein denaturation (65.04 ± 1.86%) at 500 µg/mL. In vivo, a 53.57 ± 4.71% reduction in paw inflammation was observed at 1000 mg/kg. These findings support the traditional use of Carthamus caeruleus L. and highlight its potential as a source of antioxidant and anti-inflammatory agents. Further studies are required to isolate active constituents and evaluate their therapeutic relevance.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell Longev. 2017; 2017: 8416763. DOI: 10.1155/2017/8416763 DOI: https://doi.org/10.1155/2017/8416763
Marwick TH, Ritchie R, Shaw JE, Kaye D. Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J. Am. Coll. Cardiol. 2018; 71(3): 339–351. DOI: 10.1016/j.jacc.2017.11.019 DOI: https://doi.org/10.1016/j.jacc.2017.11.019
Dahmane T, Kaci Z, Hadj Mohamed N, Abed A, Mebkhout F. Ethnobotanical study of spontaneous medicinal plants Gouraya’s National Park (Bejaia-Algeria). Egypt J. Bot. 2023; 63(3): 1083–1100. DOI : 10.21608/ejbo.2023.202565.2294
Baghiani A, Boumerfeg S, Belkhiri F, Khennouf S, Charef N, Harzallah D, Lekhmici A, Attia Abdel-Wahhab M. Antioxidant and radical scavenging properties of Carthamus caeruleus L extracts growing wild in Algerian flora. Comun. Sci. 2010; 1(2): 128–136.
Dahmani MM, Laoufi R, Selama O, Arab K. Gas chromatography coupled to mass spectrometry characterization, antiinflammatory effect, wound-healing potential, and hair growth-promoting activity of Algerian Carthamus caeruleus L (Asteraceae). Indian J. Pharmacol. 2018; 50: 123–129. DOI: https://doi.org/10.4103/ijp.IJP_65_17
DOI : 10.4103/ijp.IJP_65_17
Ouda AN, Fatiha M, Sadia M, Zohra SF, Noureddine D. In vivo anti-inflammatory activity of aqueous extract of Carthamus caeruleus L rhizome against carrageenan-induced inflammation in mice. Jordan J. Biol. Sci. 2021; 14(3): 529–535. Doi:10.54319/jjbs/140319 DOI: https://doi.org/10.54319/jjbs/140319
Belounis Y, Moualek I, Sebbane H, Dekir A, Bendif H, Garzoli S, Houali K. Phytochemical characterization and antibacterial activity of Carthamus caeruleus L. aqueous extracts: In vitro and in silico molecular docking studies. Chem. Biodivers. 2025; 22(1): e202402662. DOI: https://doi.org/10.1002/cbdv.202402662
Chaouche TM, Haddouchi F, Ksouri R, Atik-Bekkara F. Evaluation of antioxidant activity of hydromethanolic extracts of some medicinal species from South Algeria. J. Chin. Med. Assoc. 2014; 77(6): 302–307. DOI: https://doi.org/10.1016/j.jcma.2014.01.009
Siddiqui N, Rauf A, Latif A, Mahmood Z. Spectrophotometric determination of the total phenolic content, spectral and fluorescence study of the herbal Unani drug Gul-e-Zoofa (Nepeta bracteata Benth). J. Taibah Univ. Med. Sci. 2017; 12(4): 360–363. DOI: https://doi.org/10.1016/j.jtumed.2016.11.006
Abeywardhana KW, Abeysinghe DC, Dharmadasa RM, Aththanayake AML. Determination of optimum maturity stage for Ocimum sanctum L. grown under different growing systems in terms of therapeutically active secondary metabolites. World J. Agric. Res. 2014; 2(4): 159–162. DOI: https://doi.org/10.12691/wjar-2-4-4
Afonso AF, Pereira OR, Fernandes Â, Calhelha RC, Silva AM, Ferreira IC, Cardoso SM. Phytochemical composition and bioactive effects of Salvia africana, Salvia officinalis ‘Icterina’ and Salvia mexicana aqueous extracts. Molecules. 2019; 24(23): 4327. DOI: https://doi.org/10.3390/molecules24234327
Zhou J, Gao G, Zhang S, Wang H, Ke L, Zhou J, Rao P, Wang Q, Li J. Influences of calcium and magnesium ions on cellular antioxidant activity (CAA) determination. Food Chem. 2020; 320: 126625. DOI: https://doi.org/10.1016/j.foodchem.2020.126625
Jimoh MO, Afolayan AJ, Lewu FB. Antioxidant and phytochemical activities of Amaranthus caudatus L. harvested from different soils at various growth stages. Sci. Rep. 2019; 9(1): 12965. Doi:10.1038/s41598-019-49276-w DOI: https://doi.org/10.1038/s41598-019-49276-w
Serteser A, Kargioğlu M, Gök V, Bağci Y, Özcan MM, Arslan D. Determination of antioxidant effects of some plant species wild growing in Turkey. Int. J. Food Sci. Nutr. 2008; 59(7–8): 643–651. DOI: https://doi.org/10.1080/09637480701602530
Medini F, Bourgou S, Lalancette K, Snoussi M, Mkadmini K, Coté I, Abdelly C, Legault J, Ksouri R. Phytochemical analysis, antioxidant, anti-inflammatory, and anticancer activities of the halophyte Limonium densiflorum extracts on human cell lines and murine macrophages. S. Afr. J. Bot. 2015; 99: 158–164. Doi:10.1016/j.sajb.2015.04.007. DOI: https://doi.org/10.1016/j.sajb.2015.04.007
Fujiati F, Haryati H, Joharman J, Utami SW. In vitro metabolite profiling and anti-inflammatory activities of Rhodomyrtus tomentosa with red blood cell membrane stabilization methods. Rep Biochem Mol Biol. 2022;11(3):502. DOI: https://doi.org/10.52547/rbmb.11.3.502
Elkolli H, Elkolli M, Ataya FS, Salem-Bekhit MM, Zahrani SA, Abdelmageed MWM, Ernst B, Benguerba Y. In vitro and in silico activities of E. radiata and E. cinerea as an enhancer of antibacterial, antioxidant, and anti-inflammatory agents. Molecules. 2023; 28(20): 7153.
Doi:10.3390/molecules28207153. DOI: https://doi.org/10.3390/molecules28207153
Ouriagli T, Amnay A, Raoui SM, Errachidi F, Chahdi FO, Chabir R. Alkaloids from Marrubium vulgare L.: Antioxidant and anti-inflammatory activities as a function of extraction methods. Trop J Nat Prod Res. 2023; 7(7). DOI: https://doi.org/10.26538/tjnpr/v7i7.20
Rathod NB, Elabed N, Punia S, Ozogul F, Kim SK, Rocha JM. Recent developments in polyphenol applications on human health: A review with current knowledge. Plants. 2023; 12(6): 1217 DOI: https://doi.org/10.3390/plants12061217
Fernandes JC, Spindola H, De Sousa V, Santos-Silva A, Pintado ME, Malcata FX, Carvalho JE. Anti-inflammatory activity of chitooligosaccharides in vivo. Mar Drugs. 2010; 8(6): 1763–1768. Doi:10.3390/md8061763. DOI: https://doi.org/10.3390/md8061763
Kramberger K, Barlič-Maganja D, Bandelj D, Baruca Arbeiter A, Peeters K, Miklavčič Višnjevec A, Jenko Pražnikar Z. HPLC-DAD-ESI-QTOF-MS determination of bioactive compounds and antioxidant activity comparison of the hydroalcoholic and water extracts from two Helichrysum italicum species. Metabolites. 2020; 10(10): 403. doi:10.3390/metabo10100403.
Goufo P, Singh RK, Cortez I. A reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants. 2020; 9(5): 398. Doi:10.3390/antiox9050398 DOI: https://doi.org/10.3390/antiox9050398
Kramberger K, Barlič-Maganja D, Bandelj D, Baruca Arbeiter A, Peeters K, Miklavčič Višnjevec A, Jenko Pražnikar Z. HPLC-DAD-ESI-QTOF-MS determination of bioactive compounds and antioxidant activity comparison of the hydroalcoholic and water extracts from two Helichrysum italicum species. Metabolites. 2020; 10(10): 403. Doi:10.3390/metabo10100403. DOI: https://doi.org/10.3390/metabo10100403
Sruthi D, Zachariah TJ. Phenolic profiling of Piper species by liquid chromatography-mass spectrometry. J Pharm Anal. 2016; 25(2): 123–132.
Liang J, Sun J, Chen P, Frazier J, Benefield V, Zhang M. Chemical analysis and classification of black pepper (Piper nigrum L.) based on their country of origin using mass spectrometric methods and chemometrics. Food Res Int. 2021; 140: 109877. Doi:10.1016/j.foodres.2020.109877. DOI: https://doi.org/10.1016/j.foodres.2020.109877
Simirgiotis MJ, Benites J, Areche C, Sepúlveda B. Antioxidant capacities and analysis of phenolic compounds in three endemic Nolana species by HPLC-PDA-ESI-MS. Molecules. 2015; 20(6): 11490–11507. Doi:10.3390/molecules200611490. DOI: https://doi.org/10.3390/molecules200611490
Pérez-Magariño S, Bueno-Herrera M, Asensio-S-Manzanera MC. Characterization of bioactive phenolic compounds extracted from hydro-distillation by-products of Spanish Lamiaceae plants. Molecules. 2024; 29(22): 5285. Doi:10.3390/molecules29225285. DOI: https://doi.org/10.3390/molecules29225285
Zhu Z, Zhong B, Yang Z, Zhao W, Shi L, Aziz A, Rauf A, Aljohani ASM, Alhumaydhi FA, Suleria HAR. LC-ESI-QTOF-MS/MS characterization and estimation of the antioxidant potential of phenolic compounds from different parts of the lotus (Nelumbo nucifera) seed and rhizome. ACS Omega. 2022; 7(17): 14630–14642. Doi:10.1021/acsomega.1c07018 DOI: https://doi.org/10.1021/acsomega.1c07018
Zhu W, Sun S, Yang F, Zhou K. UHPLC/MS identifying potent α-glucosidase inhibitors of grape pomace via enzyme immobilized method. J Food Sci. 2018; 83(4): 1131–1139. Doi:10.1111/1750-3841.14087. DOI: https://doi.org/10.1111/1750-3841.14087
Lee JE, Jayakody JTM, Kim JI, Jeong JW, Choi KM, Kim TS, Seo C, Azimi I, Hyun J, Ryu B. The influence of solvent choice on the extraction of bioactive compounds from Asteraceae: A comparative review. Foods. 2024; 13(19): 3151. Doi:10.3390/foods13193151. DOI: https://doi.org/10.3390/foods13193151
Babbar N, Oberoi HS, Sandhu SK, Bhargav VK. Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. J Food Sci Technol. 2014; 51: 2568–2575. Doi:10.1007/s13197-012-0754-4. DOI: https://doi.org/10.1007/s13197-012-0754-4
Ji Y, Guo S, Wang B, Yu M. Extraction and determination of flavonoids in Carthamus tinctorius. Open Chem. 2018; 16(1): 1129–1133. doi:10.1515/chem-2018-0119 DOI: https://doi.org/10.1515/chem-2018-0119
Salem N, Msaada K, Hamdaoui G, Limam F, Marzouk B. Variation in phenolic composition and antioxidant activity during flower development of safflower (Carthamus tinctorius L.). J Agric Food Chem. 2011; 59(9): 4455–4463. Doi:10.1021/jf1049936. DOI: https://doi.org/10.1021/jf1049936
Baban MM, Ahmad SA, Abu-Odeh AM, Baban M, Talib WH. Anticancer, immunomodulatory, and phytochemical screening of Carthamus oxyacantha M. Bieb growing in the north of Iraq. Plants. 2023; 13(1): 42. Doi:10.3390/plants13010042. DOI: https://doi.org/10.3390/plants13010042
Yu SY, Lee YJ, Kim JD, Kang SN, Lee SK, Jang JY, Lee HK, Lim JH, Lee OH. Phenolic composition, antioxidant activity and anti-adipogenic effect of hot water extract from safflower (Carthamus tinctorius L.) seed. Nutrients. 2013; 5(12): 4894–4907. Doi:10.3390/nu5124894. DOI: https://doi.org/10.3390/nu5124894
Giamperi L, Bucchini A, Bisio A, Giacomelli E, Romussi G, Ricci D. Total phenolic content and antioxidant activity of Salvia spp. exudates. Nat Prod Commun. 2012; 7(2). Doi:10.1177/1934578X1200700221 DOI: https://doi.org/10.1177/1934578X1200700221
Madunić J, Madunić IV, Gajski G, Popić J, Garaj-Vrhovac V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett. 2018; 413: 11–22. Doi:10.1016/j.canlet.2017.10.041. DOI: https://doi.org/10.1016/j.canlet.2017.10.041
Allemailem KS, Almatroudi A, Alharbi HOA, AlSuhaymi N, Alsugoor MH, Aldakheel FM, Rahmani AH. Apigenin: A bioflavonoid with a promising role in disease prevention and treatment. Biomedicines. 2024; 12(6): 1353. Doi:10.3390/biomedicines12061353 DOI: https://doi.org/10.3390/biomedicines12061353
Azerlyn DRN, Dwijayanti DR, Masruri M, Widodo N. Exploring the In Vitro Anti-Inflammatory Effect and In Silico Toxicity Profile of Curcuma aeruginosa Roxb. Extract in RAW 264.7 Macrophages. Trop J Nat Prod Res. 2025; 9(5): 1964 – 1972 DOI: https://doi.org/10.26538/tjnpr/v9i5.12
Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacol. 2007; 15: 252–259. Doi:10.1007/s10787-007-0013-x. DOI: https://doi.org/10.1007/s10787-007-0013-x
Jun MS, Ha YM, Kim HS, Jang HJ, Kim YM, Lee YS, Kim HJ, Seo HG, Lee JH, Lee SH, Chang KC. Anti-inflammatory action of methanol extract of Carthamus tinctorius involves in heme oxygenase-1 induction. J Ethnopharmacol. 2011; 133(2): 524-530.Doi :10.1016/j.jep.2010.10.029 DOI: https://doi.org/10.1016/j.jep.2010.10.029
Sun LP, Shi FF, Zhang WW, Zhang ZH, Wang K. Antioxidant and anti-inflammatory activities of safflower (Carthamus tinctorius L.) honey extract. Foods. 2020; 9(8): 1039. Doi:10.3390/foods9081039. DOI: https://doi.org/10.3390/foods9081039
Martins CAF, Campos ML, Irioda AC, Stremel DP, Trindade ACLB, Pontarolo R. Anti-inflammatory effect of Malva sylvestris, Sida cordifolia, and Pelargonium graveolens is related to inhibition of prostanoid production. Molecules. 2017; 22: 1883. Doi:10.3390/molecules22111883 DOI: https://doi.org/10.3390/molecules22111883
Reshma AK, Arun KP. In vitro anti-inflammatory, antioxidant and nephroprotective studies on leaves of Aegle marmelos and Ocimum sanctum. Asian J Pharm Clin Res. 2014; 7.
Modak D, Paul S, Sarkar S, Thakur S, Bhattacharjee S. Validating potent anti-inflammatory and anti-rheumatoid properties of Drynaria quercifolia rhizome methanolic extract through in vitro, in vivo, in silico and GC-MS-based profiling. BMC Complement Med Ther. 2021; 21: 89. DOI: https://doi.org/10.1186/s12906-021-03265-7
Musfiroh I, Muchtaridi M, Fristiohady A, Ikram NKK. Anti-inflammatory activity of Qutsh Al Hindi (Saussurea lappa) root fractions: in vitro assay and characterization of its active compound. Trop J Nat Prod Res. 2024; 8(11). DOI: https://doi.org/10.26538/tjnpr/v8i11.35
Ospelt C, Gay S. TLRs and chronic inflammation. Int J Biochem Cell Biol. 2010; 42(4): 495–505. Doi:10.1016/j.biocel.2009.10.010. DOI: https://doi.org/10.1016/j.biocel.2009.10.010
Benhamou A, Fazouane F. Ethnobotanical study, phytochemical characterization and healing effect of Carthamus coeruleus L. rhizomes. Int J Med Aromat Plants. 2013; 3(1): 61–68


