Tablet Development of Cemcem (Spondias pinnata (L.f) Kurz): Primojel® Variation and Assessment of Antioxidant Properties

Main Article Content

Ni M. D. S. Suena
Debby Juliadi
Maria M. V. Sasadara
Ketut A. Adrianta
Abdul Hapid

Abstract

Oxidative stress is a major contributor to degenerative diseases. Spondias pinnata (L.f.) Kurz, commonly known as the Indian hog plum, is locally called Cemcem by the Balinese. Loloh cemcem, a traditional Balinese herbal drink, is rich in phenolics, tannins, vitamin C, and flavonoids, and is believed to possess antioxidant properties. Due to its high water content and limited stability, developing Cemcem leaf extract (CLE) tablets offer a more practical alternative. This study aimed to determine the optimal concentration of Primojel® as a disintegrant and evaluate the antioxidant activity of CLE tablets. Primojel® was tested at 2% (F1), 4% (F2), and 6% (F3). Evaluations included granule (moisture, flowability) and tablet properties (appearance, weight uniformity, friability, disintegration time, hardness). The optimal formula (F3) was reformulated with 2% and 5% CLE (F4 and F5), and antioxidant activity was measured using the DPPH assay, expressed as Ascorbic Acid Equivalent Antioxidant Capacity (AEAC). F3 showed ideal physical characteristics: friability (0.71%), disintegration time within acceptable limits, and appropriate hardness (5.77 kg). In contrast, F1 was too hard (8.58 kg), F2 was too soft (3.63 kg) and unstable over time. Antioxidant activity of F4 and F5 was 83.54 ± 0.29 and 170.78 ± 5.71 mg AEAC/100 g, respectively. A 6% Primojel® concentration produced CLE tablets with optimal physical properties and antioxidant potential. These findings support future research to optimize formulation components, enhancing efficacy and stability.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Tablet Development of Cemcem (Spondias pinnata (L.f) Kurz): Primojel® Variation and Assessment of Antioxidant Properties. (2025). Tropical Journal of Natural Product Research , 9(8), 3589-3596. https://doi.org/10.26538/tjnpr/v9i8.19

References

1. Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D, Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023;11(May):1-24. doi:10.3389/fchem.2023.1158198 DOI: https://doi.org/10.3389/fchem.2023.1158198

2. Badan Kebijakan Pembangunan Kesehatan. Thematic Report of the Indonesian Health Survey 2023.; 2024. https://www.badankebijakan.kemkes.go.id/laporan-tematik-ski/

3. Sharifi-Rad M, Anil Kumar N V., Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy M El, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol. 2020;11(July):1-21. doi:10.3389/fphys.2020.00694 DOI: https://doi.org/10.3389/fphys.2020.00694

4. Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur J Med Chem. 2021;209:112891. doi:10.1016/j.ejmech.2020.112891 DOI: https://doi.org/10.1016/j.ejmech.2020.112891

5. Hussain S, Rasul A, Hussain G, Rasheed M, Manan M, Riaz K, Riaz S, Khalil MA, Sadiqa A, Adem S. Physiological Significance of Oxidative Stress and Anti-oxidative System. In: The Role of Natural Antioxidants in Brain Disorders. Springer; 2023:49-69. doi:10.1007/978-3-031-41188-5_3 DOI: https://doi.org/10.1007/978-3-031-41188-5_3

6. Sheneni VD, Muhammad SS, Shaibu IE. Natural chemicals for healthy living: plant secondary metabolic compounds. MOJ Food Process Technol. 2023;11(2):98-104. doi:10.15406/mojfpt.2023.11.00286 DOI: https://doi.org/10.15406/mojfpt.2023.11.00286

7. Alamzeb M, Khan B, Ullah I, Omer M, Adnan. Natural Antioxidants: An Update. In: Medicinal Plants - Chemical, Biochemical, and Pharmacological Approaches [Working Title]. IntechOpen; 2023:15. doi:10.5772/intechopen.112462 DOI: https://doi.org/10.5772/intechopen.112462

8. Rahaman MM, Hossain R, Herrera‐Bravo J, Islam MT, Atolani O, Adeyemi OS, Owolodun OA, Kambizi L, Daştan SD, Calina D, Sharifi‐Rad J. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Sci Nutr. 2023;11(4):1657-

1670. doi:10.1002/fsn3.3217 DOI: https://doi.org/10.1002/fsn3.3217

9. De-Montijo-Prieto S, Razola-Díaz MDC, Gómez-Caravaca AM, Guerra-Hernandez EJ, Jiménez-Valera M, Garcia-Villanova B, Ruiz-Bravo A, Verardo V. Essential Oils from Fruit and Vegetables, Aromatic Herbs, and Spices: Composition, Antioxidant, and Antimicrobial Activities. Biology (Basel). 2021;10(11):1091. doi:10.3390/biology10111091 DOI: https://doi.org/10.3390/biology10111091

10. Okolie N, Falodun A, Davids O. Evaluation of The Antioxidant Activity of Root Extract of Pepper Fruit (Dennetia tripetala), and it’s Potential for the Inhibition of Lipid Peroxidation. African J Tradit Complement Altern Med. 2014;11(3):221. doi:10.4314/ajtcam.v11i3.31 DOI: https://doi.org/10.4314/ajtcam.v11i3.31

11. Egharevba E, Chukwuemeke-Nwani P, Eboh U, Okoye E, Bolanle I, Oseghale I, Imieje V, Erharuyi O, Falodun A. Evaluation of the Antioxidant and Hypoglycaemic Potentials of the Leaf Extracts of Stachytarphyta jamaicensis (Verbenaceae). Trop J Nat Prod Res. 2019;3(5):170-174. doi:10.26538/tjnpr/v3i5.4 DOI: https://doi.org/10.26538/tjnpr/v3i5.4

12. Sutana IG. Benefits of Loloh Don Cemcem in the Traditional Health System. J Yoga dan Kesehat. 2020;3(2):174. doi:10.25078/jyk.v3i2.1737 DOI: https://doi.org/10.25078/jyk.v3i2.1737

13. Pebiana NPN, Puspasari YD, Dewi RM, Arnyana IBP. Ethnobotanical Study of Loloh and Local Herbal Tea to Support the Creative Economy of

Penglipuran Traditional Village Community in Bangli Regency, Bali. Bioma Berk Ilm Biol. 2021;23(2):91-99. doi:10.14710/bioma.23.2.91-99 DOI: https://doi.org/10.14710/bioma.23.2.91-99

14. Sinarsari NM, Sukadana IK. Traditional Drink Loloh Don Cemcem as Welcome Drink in Penglipuran Tourism Village Bali. Paryaṭaka J Pariwisata Budaya dan Keagamaan. 2023;2(1):163-178. doi:10.53977/pyt.v2i1.650 DOI: https://doi.org/10.53977/pyt.v2i1.650

15. Gomathi M, Deepa N, Muraleedharan A, Maheswari SU, Thirumalaisamy R, Selvankumar T, Chinnathambi A, Alharbi SA. Novel drug delivery materials: Chitosan polymers conjugated with Spondias pinnata phytocompounds for enhanced anti‐microbial and anti‐cancer properties. Polym Adv Technol. 2024;35(9). doi:10.1002/pat.6561 DOI: https://doi.org/10.1002/pat.6561

16. Ahmed T, Rana MR, Maisha MR, Sayem ASM, Rahman M, Ara R. Optimization of ultrasound-assisted extraction of phenolic content & antioxidant activity of hog plum (Spondias pinnata L. f. kurz) pulp by response surface methodology. Heliyon. 2022;8(10):e11109. doi:10.1016/j.heliyon.2022.e11109 DOI: https://doi.org/10.1016/j.heliyon.2022.e11109

17. Wrasiati LP, Antara NS, Wartini NM. Characteristics of Cemcem (Spondiaz pinnata L.f. Kurz) Instant Powder. Media Ilm Teknol Pangan. 2014;1(1):58-70. https://ojs.unud.ac.id/index.php/pangan/article/view/13070

18. Jitendra NN, Garg R, Alam MI, Yadav AK. Advances in Tablet Production and Tablet Coating. In: Advances in Pharmaceutical Product Development. Springer Nature Singapore; 2025:143-174. doi:10.1007/978-981-97-9230-6_6 DOI: https://doi.org/10.1007/978-981-97-9230-6_6

19. Goel R, Bhardwaj S, Bana S. Pharmaceutical excipients. In: Dosage Forms, Formulation Developments and Regulations. Elsevier; 2024:311-348. doi:10.1016/B978-0-323-91817-6.00003-6 DOI: https://doi.org/10.1016/B978-0-323-91817-6.00003-6

20. Sheskey PJ, Hancock BC, Moss GP, Goldfarb DJ. Handbook of Pharmaceutical Excipients. 9th ed. (Sheskey PJ, Hancock BC, Moss GP, Goldfarb DJ, eds.). Pharmaceutical Press and American Pharmacist Association; 2020.

21. Martinez MN, Sinko B, Wu F, Flanagan T, Borbás E, Tsakalozou E, Giacomini KM. A Critical Overview of the Biological Effects of Excipients (Part I): Impact on Gastrointestinal Absorption. AAPS J. 2022;24(3):60. doi:10.1208/s12248-022-00711-3 DOI: https://doi.org/10.1208/s12248-022-00711-3

22. Subramaniam S, Kamath S, Ariaee A, Prestidge C, Joyce P. The impact of common pharmaceutical excipients on the gut microbiota. Expert Opin Drug Deliv. 2023;20(10):1297-1314. doi:10.1080/17425247.2023.2223937 DOI: https://doi.org/10.1080/17425247.2023.2223937

23. Sujarwo W, Keim AP. Spondias pinnata (L. f.) Kurz. (Anacardiaceae): Profiles and Applications to Diabetes. In: Bioactive Food as Dietary Interventions for Diabetes. 2nd ed. Elsevier; 2019:395-405. doi:10.1016/B978-0-12-813822-9.00027-8 DOI: https://doi.org/10.1016/B978-0-12-813822-9.00027-8

24. Sultana N, Ruhul-Amin M, Hasan I, Kabir SR, Asaduzzaman AKM. Antibacterial, antioxidant, and anticancer effects of green synthesized silver/silver chloride nanoparticles using Spondias pinnata bark extract. Food Chem Adv. 2024;4(November 2023):100709. doi:10.1016/j.focha.2024.100709 DOI: https://doi.org/10.1016/j.focha.2024.100709

25. Suryanditha PA, Widhidewi NW, Paramasatiari AAAL, Wedari NLPH. Antibacterial activity of Spondias pinnata leaf extract on the in-vitro growth of Gram-positive and Gram-negative bacteria. Indones J Biomed Sci. 2024;18(1):90-94. doi:10.15562/ijbs.v18i1.550 DOI: https://doi.org/10.15562/ijbs.v18i1.550

26. Aryadnyani NP, Dewi IGASM, Yasa IWPS, Wande IN, Bakta IM, Rosmiati R. Hepatoprotective Effect of Spondias pinnata in Isoniazid-Rifampicin-Induced Toxicity in Wistar rats. Trop J Nat Prod Res. 2025;9(3):1031-1037. doi:10.26538/tjnpr/v9i3.19 DOI: https://doi.org/10.26538/tjnpr/v9i3.19

27. S. Swathi SS, K. Lakshman KL. Phytopharmacological and Biological Exertion of Spondias pinnata: (A Review). Orient J Chem. 2022;38(2):268-277. doi:10.13005/ojc/380206 DOI: https://doi.org/10.13005/ojc/380206

28. Haris A, Arisanty A, Prayitno S. Formulation and Test of Burn Healing Effect of Gel Preparation of Forest Kedondong Leaf Extract (Spondias pinnata L) Combination with Honey on Rabbits (Oryctolagus cuniculus). Fito Med J Pharm Sci. 2022;14(1):48-55. http://journal.unpacti.ac.id/index.php/FITO/article/view/465

29. Suena NMDS, Juanita RA, Wardani IGAAK, Antari NPU. Skin Revitalizing Red Dragon Fruit Peel Body Scrub: The Impact of Stearic Acid Variations and Comparison with Commercial Product. J Ilm Medicam. 2024;10(2):138-148. doi:10.36733/medicamento.v10i2.9883 DOI: https://doi.org/10.36733/medicamento.v10i2.9883

30. Cahyaningsih E, Yuda PESK, Santoso P. Phytochemical Screening and Antioxidant Activity of Telang Flower Extract (Clitoria ternatea L.) using

UV-Vis Spectrophotometry. J Ilm Medicam. 2019;5(1):51-57. doi:10.36733/medicamento.v5i1.851 DOI: https://doi.org/10.36733/medicamento.v5i1.851

31. Tiwari A, Tiwari A. Comparative study of qualitative flavonoid content of Acacia catechu bark extracts. World J Biol Pharm Heal Sci. 2023;16(2):181-188. doi:10.30574/wjbphs.2023.16.2.0486 DOI: https://doi.org/10.30574/wjbphs.2023.16.2.0486

32. Rahmatullah S, Pambudi DB, Permadi YW, Hikmah N. Formulation of Taro Leaf Extract (Colocasia esculenta (L.) Schott.) Tablets with Variation in Polyvinylpyrrolidone (PVP) Concentration as a Tablet Binder. J Ilm Kesehat. 2023;16(1):47-55. doi:10.48144/jiks.v16i1.1429 DOI: https://doi.org/10.48144/jiks.v16i1.1429

33. Pratama R, Nurasih W, Asnawi A, Suhardiman A, Zaelani D, Pahlevi MR. Development and Standardization of an Effervescent Granule Formulation of Pomegranate Peel Extract with Potential Antioxidant Activity. Trop J Nat Prod Res. 2025;9(3):1112-1117. doi:10.26538/tjnpr/v9i3.28 DOI: https://doi.org/10.26538/tjnpr/v9i3.28

34. Suena NMDS, Adrianta KA, Wardani IGAAK, Antari NPU. Formulation of White Edible Bird’s Nest (Aerodramus fuciphagus) Granules with Varying Combinations of Maltodextrin and Povidone. JFIOnline | Print ISSN 1412-1107 | e-ISSN 2355-696X. 2022;14(2):172-189.

doi:10.35617/jfionline.v14i2.90 DOI: https://doi.org/10.35617/jfionline.v14i2.90

35. Husni P, Fadhiilah ML, Hasanah U. Formulation and Physical Stability Evaluation of Instant Dry Powder Granules of Genjer Stems

(Limnocharis flava (L.) Buchenau) as a Fiber Supplement. J Ilm Farm Farmasyifa. 2020;3(1):1-8. doi:10.29313/jiff.v3i1.5163 DOI: https://doi.org/10.29313/jiff.v3i1.5163

36. Andriani R, Mahmudah R, Nuralifah N, Jannah SRN, Sida NA, Hikmah N, Trinovitasari N, Wulandari WP. Formulation and Evaluation of Antidiabetic Granule Preparations Using Teak Leaf Extract (Tectona grandis Linn. F.) as the Active Ingredient. J Mandala Pharmacon Indones. 2023;9(2):484-491. doi:10.35311/jmpi.v9i2.410 DOI: https://doi.org/10.35311/jmpi.v9i2.410

37. Aulton ME, Taylor KMG. Aulton’s Pharmaceutics: The Design and Manufacture of Medicines. 6th ed. (Taylor KMG, Aulton ME, eds.). Elsevier; 2021.

38. Saryanti D, Saputri FE. Formulation of Tablets of Longan (Euphoria longana Lam) Leave Extract with Variations of Polyvyny Pirolidone (PVP K-30) as Binder. JKPharm J Kesehat Farm. 2022;4(1):17-23. doi:10.36086/jpharm.v4i1.1231 DOI: https://doi.org/10.36086/jpharm.v4i1.1231

39. Badan Pengawas Obat dan Makanan Republik Indonesia. BPOM Regulation No. 29 of 2023 on the Safety and Quality Requirements for Traditional Medicines. Published online 2023:43.

40. Gomes AF, Almeida MP, Ruela ALM, Amaral JG, David JM, Leite MF. Development and evaluation of physical and release properties of a tablet formulation containing dry hydroethanolic extract from Lippia alba leaves. J Herb Med. 2021;29:100459. doi:10.1016/j.hermed.2021.100459 DOI: https://doi.org/10.1016/j.hermed.2021.100459

41. Kementerian Kesehatan RI. Indonesian Pharmacopoeia, 6th Edition. Direktorat Jenderal Kefarmasian dan Alat Kesehatan, ed. Kementeri Kesehat RI. Published online 2020:2371.

42. Sekti BH, Permata A, S. P NO. Formulation and Physical Stability Testing of Compressed Papaya Leaf (Carica papaya L.) Extract Tablets. HERBAPHARMA J Herb Farmacol. 2022;4(1):53-62. doi:10.55093/herbapharma.v4i1.289 DOI: https://doi.org/10.55093/herbapharma.v4i1.289

43. Aryasa IWT, Artini NPR, Juliari PGAE. Test Of Nutrition Value and Antioxidant Capacity of Loloh Cemcem (Spondias Pinnata (L.F) Kurz.) Bebalang Village Area, Bangli Sub-District, Bangli District, Bali. J Sains dan Terap Kim. 2021;15(2):133. doi:10.20527/jstk.v15i2.10345 DOI: https://doi.org/10.20527/jstk.v15i2.10345

44. Salimi YK, Kamarudin J, Ischak NI, Bialangi N. Antioxidant Activity of Secondary Metabolite Compounds in Methanol Extract of Ketapang (Terminalia catappa L.) Leaves. JambJChem. 2022;4(2):12-21. doi:10.34312/jambchem.v4i2.11618

45. Azizah S, Nursamsiar N, Nur S. Antioxidant Activity Assay of Ethanol Extract of Spondias Pinnata (L.F.) Kurz. Leaves Using Various Assay Methods. J Ilm Manuntung. 2019;5(1):91. doi:10.51352/jim.v5i1.227 DOI: https://doi.org/10.51352/jim.v5i1.227

46. Suena NMDS, Rahayu LRP, Wijaya SC, Antari NPU, Adrianta KA. Formulation and Antioxidant Activity Test of Centella asiatica Herba Extract and Moringa oleifera Leaves Extract as An Anti-Aging Emulgel. Trop J Nat Prod Res. 2024;8(3):6525-6536. doi:10.26538/tjnpr/v8i3.9 DOI: https://doi.org/10.26538/tjnpr/v8i3.9

47. Silitonga DR, Arianto A, Silalahi J. Determination of antioxidant activity, total phenolic and total flavonoid contents in tamarillo (Solanum betaceum) peel’s ethanolic extracts. Int J Basic Clin Pharmacol. 2024;13(1):29-35. doi:10.18203/2319-2003.ijbcp20233819 DOI: https://doi.org/10.18203/2319-2003.ijbcp20233819

48. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. doi:10.1016/j.foodchem.2022.132531 DOI: https://doi.org/10.1016/j.foodchem.2022.132531

49. Wang B, Sun X, Xiang J, Guo X, Cheng Z, Liu W, Tan S. A critical review on granulation of pharmaceuticals and excipients: Principle, analysis and typical applications. Powder Technol. 2022;401(March):117329. doi:10.1016/j.powtec.2022.117329 DOI: https://doi.org/10.1016/j.powtec.2022.117329

50. Poddar R, Saluja G, Mallick SS, Kundan L. An investigation into static angle of repose using pharmaceutical powders. Part Sci Technol. 2024;42(3):344-353. doi:10.1080/02726351.2023.2250299 DOI: https://doi.org/10.1080/02726351.2023.2250299

51. Maroof MA, Mahboubi A, Vincens E, Noorzad A. Effects of particle morphology on the minimum and maximum void ratios of granular materials. Granul Matter. 2022;24(1):41. doi:10.1007/s10035-021-01189-0 DOI: https://doi.org/10.1007/s10035-021-01189-0

52. Fadhilah IN, Saryanti D. Formulation and Physical Stability Testing of Bitter Melon (Momordica charantia L.) Extract Tablet Prepared by Wet Granulation. Smart Med J. 2019;2(1):25-31. doi:10.13057/smj.v2i1.29676 DOI: https://doi.org/10.13057/smj.v2i1.29676

53. Permadi A, Yuliani S, Wahyuningsih I, Satar I. Formulation of Curcuma longa L Extract Tablets as a Candidate for Anti-Dementia Therapy. Media Farm. 2021;17(1):70. doi:10.32382/mf.v17i1.2057 DOI: https://doi.org/10.32382/mf.v17i1.2057

54. Murase Y, Takayama K, Uchimoto T, Uchiyama H, Kadota K, Tozuka Y. Prediction of tablet weight variability from bulk flow properties by sparse modeling. Powder Technol. 2022;407:117681. doi:10.1016/j.powtec.2022.117681 DOI: https://doi.org/10.1016/j.powtec.2022.117681

55. Hartesi B, Sutrisno D, Chairani S, Ariska P. Formulation of Acetosal Tablets by Direct Compression Using Pregelatinized Potato Starch as Filler. J Healthc Technol Med. 2020;6(1):149-162.

56. Kute VG, Patil RS, Kute VG, Kaluse PD. Immediate-release dosage form; focus on disintegrants use as a promising excipient. J Drug Deliv Ther. 2023;13(9):170-180. doi:10.22270/jddt.v13i9.6217 DOI: https://doi.org/10.22270/jddt.v13i9.6217

57. Adriana Y. Antioxidant Activity Test of Meniran Extract (Phyllanthus niruri L.), Black Turmeric Rhizome Extract (Curcuma aeruginosa Roxb.), and Black Cumin Seed Extract (Nigella sativa L.) Tablets. J Med Hutama. 2020;01(03):139-145. https://jurnalmedikahutama.com/index.php/JMH/article/view/35

58. Iskandar B, Susanti I. Physical Properties Testing of Enteric-Coated Tablets of Generic and Branded Diclofenac Potassium Available in Pharmacies in Siak Hulu District. J Penelit Farm Indones. 2019;8(1):12-17. doi:10.51887/jpfi.v8i1.588 DOI: https://doi.org/10.51887/jpfi.v8i1.588

59. Gulcin İ, Alwasel SH. DPPH Radical Scavenging Assay. Processes. 2023;11(8):2248. doi:10.3390/pr11082248 DOI: https://doi.org/10.3390/pr11082248

60. Fatiha M, Abdelkader T. Study of antioxidant activity of Pyrimidinium betaines by DPPH radical scavenging method. J Anal Pharm Res.

2019;8(2):33-36. doi:10.15406/japlr.2019.08.00308 DOI: https://doi.org/10.15406/japlr.2019.08.00308

61. Isildak Ö, Yildiz I, Genc N. A new potentiometric PVC membrane sensor for the determination of DPPH radical scavenging activity of plant extracts. Food Chem. 2022;373:131420. doi:10.1016/j.foodchem.2021.131420 DOI: https://doi.org/10.1016/j.foodchem.2021.131420

62. Yamauchi M, Kitamura Y, Nagano H, Kawatsu J, Gotoh H. DPPH Measurements and Structure—Activity Relationship Studies on the Antioxidant Capacity of Phenols. Antioxidants. 2024;13(3):309. doi:10.3390/antiox13030309 DOI: https://doi.org/10.3390/antiox13030309

63. Hassan MM, Joshi N. Hydrothermal effects on physicochemical, sensory attributes, vitamin C, and antioxidant activity of frozen immature Dolichos lablab. Heliyon. 2020;6(1):e03136. doi:10.1016/j.heliyon.2019.e03136 DOI: https://doi.org/10.1016/j.heliyon.2019.e03136

64. Gulcin İ. Antioxidants and antioxidant methods: an updated overview. Arch Toxicol. 2020;94(3):651-715. doi:10.1007/s00204-020-02689-3 DOI: https://doi.org/10.1007/s00204-020-02689-3

65. Bilenler Koc T, Kuyumcu Savan E, Karabulut I. Electrochemical Determination of the Antioxidant Capacity, Total Phenolics, and Ascorbic Acid

in Fruit and Vegetables by Differential Pulse Voltammetry (DPV) with a p -Toluene Sulfonic Acid Modified Glassy Carbon Electrode (TSA/GCE).

Anal Lett. 2023;56(6):881-894. doi:10.1080/00032719.2022.2144344 DOI: https://doi.org/10.1080/00032719.2022.2144344

66. Carr AC, Lykkesfeldt J. Discrepancies in global vitamin C recommendations: a review of RDA criteria and underlying health perspectives. Crit Rev Food Sci Nutr. 2021;61(5):742-755. doi:10.1080/10408398.2020.1744513 DOI: https://doi.org/10.1080/10408398.2020.1744513

67. Hoang X, Shaw G, Fang W, Han B. Possible application of high-dose vitamin C in the prevention and therapy of coronavirus infection. J Glob

Antimicrob Resist. 2020;23:256-262. doi:10.1016/j.jgar.2020.09.025 DOI: https://doi.org/10.1016/j.jgar.2020.09.025

68. Najihudin A, Rahmat D, Anwar SER. Formulation of Instant Granules From Ethanol Extract of Tangohai (Kleinhovia hospita L.) Leaves as an antioxidant. J Ilm Farm Bahari. 2019;10(1):91. doi:10.52434/jfb.v10i1.651 DOI: https://doi.org/10.52434/jfb.v10i1.651

69. Zawiślak A, Francik R, Francik S, Knapczyk A. Impact of Drying Conditions on Antioxidant Activity of Red Clover (Trifolium pratense), Sweet Violet (Viola odorata) and Elderberry Flowers (Sambucus nigra). Materials (Basel). 2022;15(9):3317. doi:10.3390/ma15093317 DOI: https://doi.org/10.3390/ma15093317

70. Mrázková M, Sumczynski D, Orsavová J. Influence of Storage Conditions on Stability of Phenolic Compounds and Antioxidant Activity Values in Nutraceutical Mixtures with Edible Flowers as New Dietary Supplements. Antioxidants. 2023;12(4):962. doi:10.3390/antiox12040962 DOI: https://doi.org/10.3390/antiox12040962

71. Ali A, Chong C, Mah S, Abdullah L, Choong T, Chua B. Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts. Molecules. 2018;23(2):484. doi:10.3390/molecules23020484 DOI: https://doi.org/10.3390/molecules23020484

72. González-Peña MA, Lozada-Ramírez JD, Ortega-Regules AE. Antioxidant activities of spray-dried carotenoids using maltodextrin-Arabic gum as wall materials. Bull Natl Res Cent. 2021;45(1):58. doi:10.1186/s42269-021-00515-z DOI: https://doi.org/10.1186/s42269-021-00515-z