The Effect of Crocus Sativus (Saffron) on the Liver Histology in Diabetic Rats Induced by a High-Fat High-Glucose Diet and Low Dose of Streptozotocin

Main Article Content

Nadya S. Nasrul
Ika Yustisia
Himawan Sanusi
Husni Cangara
Rahmawati Minhajat

Abstract

Diabetes mellitus (DM) contributes to hepatic dysfunction through oxidative stress, inflammation, and insulin resistance. To address its prevalence, Crocus sativus L. (saffron) stigma contains antioxidant and hepatoprotective compounds. Therefore, this study aims to examine the effect of saffron ethanol extract on liver function and histological features in rats with DM. A total of 17 male Wistar rats were divided into 4 groups, namely K– (non-diabetic control, n=4), Kd (diabetic control, n=5), P1 (diabetic+saffron 20 mg/kgBW, n=4), and P2 (diabetic+saffron 60 mg/kgBW, n=4). From weeks 1-12, K– received a standard diet, while Kd, P1, and P2 received a high-fat high-glucose diet (HFHGD). Diabetes was then induced at week 4 in Kd, P1, and P2 through intraperitoneal administration of streptozotocin (35 mg/kgBW). K– and Kd received distilled water, while P1 and P2 were treated with saffron ethanol extract from weeks 9-12. Flavonoids, alkaloids, tannins, and saponins were identified through phytochemical analysis. At week 12, the animals were sedated for blood collection and then euthanized for liver sampling. Liver weight, serum levels of aspartate aminotransferase, alanine aminotransferase, and cholesterol were assessed. Liver histology was assessed semiquantitatively. Kd group showed significantly increased liver weight (p=0.002) and cholesterol (p<0.001) compared to K–. In addition, P2 showed reduced cholesterol (p<0.01vs Kd) and histological improvements. Aspartate and alanine aminotransferase levels decreased nonsignificantly (p>0.05). These findings suggest that saffron stigma extract can exert notable hepatoprotective effects in rats induced with DM, particularly in cholesterol reduction and histological improvements.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

The Effect of Crocus Sativus (Saffron) on the Liver Histology in Diabetic Rats Induced by a High-Fat High-Glucose Diet and Low Dose of Streptozotocin. (2025). Tropical Journal of Natural Product Research , 9(8), 3922 – 3928. https://doi.org/10.26538/tjnpr/v9i8.55

References

⦁ PERKENI (Indonesian Society of Endocrinology). Clinical practice guideline for type 2 diabetes mellitus in Indonesia. (1st ed.). Jakarta: PERKENI; 2021. 104 p.

⦁ Nakitto AMS, Muyonga JH, Byaruhanga YB, Wagner AE. Solanum anguivi Lam. Fruits: Their Potential Effects on Type 2 Diabetes Mellitus. Molecules. 2021;26(7):2044. doi:10.3390/molecules26072044 DOI: https://doi.org/10.3390/molecules26072044

⦁ Mohamed J, Nazratun Nafizah AH, Zariyantey AH, Budin SB. Mechanisms of Diabetes-Induced Liver Damage: The role of oxidative stress and inflammation. Sultan Qaboos Univ Med J. 2016;16(2):132–141. doi:10.18295/squmj.2016.16.02.002 DOI: https://doi.org/10.18295/squmj.2016.16.02.002

⦁ Tauil RB, Golono PT, de Lima EP, de Alvares Goulart R, Guiguer EL, Bechara MD, Nicolau CCT, Yanaguizawa Junior JL, Fiorini AMR, Méndez-Sánchez N, Abenavoli L, Direito R, Valente VE, Laurindo LF, Barbalho SM. Metabolic-Associated Fatty Liver Disease: The Influence of Oxidative Stress, Inflammation, Mitochondrial Dysfunctions, and the Role of Polyphenols. Pharmaceuticals (Basel). 2024;17(10):1354. doi: 10.3390/ph17101354. DOI: https://doi.org/10.3390/ph17101354

⦁ Thakur S, Kumar V, Das R, Sharma V, Mehta DK. Biomarkers of Hepatic Toxicity: An Overview. Curr Ther Res Clin Exp. 2024;100:100737. doi: 10.1016/j.curtheres.2024.100737. DOI: https://doi.org/10.1016/j.curtheres.2024.100737

⦁ Marrone G, Urciuoli S, Di Lauro M, Cornali K, Montalto G, Masci C, Vanni G, Tesauro M, Vignolini P, Noce A. Saffron (Crocus sativus L.) and Its By-Products: Healthy Effects in Internal Medicine. Nutrients. 2024;16(14):2319. doi: 10.3390/nu16142319. DOI: https://doi.org/10.3390/nu16142319

⦁ Shirali S, Zahra Bathaie S, Nakhjavani M. Effect of crocin on the insulin resistance and lipid profile of streptozotocin-induced diabetic rats. Phytother Res. 2013;27(7):1042-1047. doi: 10.1002/ptr.4836. DOI: https://doi.org/10.1002/ptr.4836

⦁ Samaha MM, Said E, Salem HA. A comparative study of the role of crocin and sitagliptin in attenuation of STZ-induced diabetes mellitus and the associated inflammatory and apoptotic changes in pancreatic β-islets. Environ Toxicol Pharmacol. 2019;72:103238. doi: 10.1016/j.etap.2019.103238. DOI: https://doi.org/10.1016/j.etap.2019.103238

⦁ Samarghandian S, Farkhondeh T, Samini F. Effect of Crocus sativus (saffron) on expression of TNF-α and IL-6 in aorta tissue of streptozotocin-induced diabetic rats. Trop J Nat Prod Res. 2024;8(5):857–861.

⦁ Novitasari F, Astuti I, Setyawati D, Suranto S. The effect of saffron ethanol extract on TNF-α expression and liver histopathology in high-fat diet-induced rats. Trop J Nat Prod Res. 2025;9(4):625–630.

⦁ Karim M, Pirzad S, Shirsalimi N, Hosseini MH, Ebrahimi P, Khoshdooz S, Rashidian P. Effects of saffron (Crocus sativus L.) supplementation on cardiometabolic Indices in diabetic and prediabetic overweight patients: a systematic review and meta-analysis of RCTs. Diabetol Metab Syndr. 2024;16(1):286. doi: 10.1186/s13098-024-01530-6. DOI: https://doi.org/10.1186/s13098-024-01530-6

⦁ Gheibi S, Kashfi K, Ghasemi A. A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. Biomed Pharmacother. 2017;95:605-613. doi: 10.1016/j.biopha.2017.08.098. DOI: https://doi.org/10.1016/j.biopha.2017.08.098

⦁ Soetikno V, Andini P, Iskandar M, Matheos CC, Herdiman JA, Kyle IK, Suma MNI, Louisa M, Estuningtyas A. Alpha-Mangosteen lessens high-fat/high-glucose diet and low-dose streptozotocin induced-hepatic manifestations in the insulin resistance rat model. Pharm Biol. 2023;61(1):241-248. doi: 10.1080/13880209.2023.2166086. DOI: https://doi.org/10.1080/13880209.2023.2166086

⦁ Lennikov A, ElZaridi F, Yang M. Modified streptozotocin-induced diabetic model in rodents. Anim Model Exp Med. 2024;7(5):777-780. doi: 10.1002/ame2.12497. DOI: https://doi.org/10.1002/ame2.12497

⦁ Mohammad R, Daryoush M, Ali R, Yousef D, Mehrdad N. Attenuation of Oxidative Stress of Hepatic Tissue by Ethanolic Extract of Saffron (Crocus sativus L.) in Streptozotocin-Induced Diabetic Rats. Afr J Pharm Pharmacol. 2011;5(19):2166–2173. doi:10.5897/AJPP11.624 DOI: https://doi.org/10.5897/AJPP11.624

⦁ Harborne JB. Textbook of phytochemical methods. A guide to modern techniques of plant analysis. (3rd ed.). London: Chapman and Hall Limited; 1998. 302 p.

⦁ Dehghan F, Hajiaghaalipour F, Yusof A, Muniandy S, Hosseini SA, Heydari S, Salim LZ, Azarbayjani MA. Saffron with resistance exercise improves diabetic parameters through the GLUT4/AMPK pathway in-vitro and in-vivo. Sci Rep. 2016;6:25139. doi: 10.1038/srep25139. DOI: https://doi.org/10.1038/srep25139

⦁ Krisnamurti DGB, Purwaningsih EH, Tarigan TJE, Nugroho CMH, Soetikno V, Louisa M. Alterations of Liver Functions and Morphology in a Rat Model of Prediabetes After a Short-term Treatment of a High-fat High-glucose and Low-dose Streptozotocin. Maced J Med Sci. 2022;10(A):668-674. doi: 10.3889/oamjms.2022.8717. DOI: https://doi.org/10.3889/oamjms.2022.8717

⦁ França LM, Dos Santos PC, Barroso WA, Gondim RSD, Coêlho CFF, Flister KFT, Paes AMA. Post-weaning exposure to high-sucrose diet induces early non-alcoholic fatty liver disease onset and progression in male mice: role of dysfunctional white adipose tissue. J Dev Orig Health Dis. 2020;11(5):509-520. doi: 10.1017/S2040174420000598. DOI: https://doi.org/10.1017/S2040174420000598

⦁ Saigo Y, Uno K, Ishigure T, Odake T, Ohta T. Pathophysiological Features of Rat Models of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. In Vivo. 2024;38(3):990-999. doi: 10.21873/invivo.13532. DOI: https://doi.org/10.21873/invivo.13532

⦁ Linden AG, Li S, Choi HY, Fang F, Fukasawa M, Uyeda K, Hammer RE, Horton JD, Engelking LJ, Liang G. Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J Lipid Res. 2018;59(3):475-487. doi: 10.1194/jlr.M081836. DOI: https://doi.org/10.1194/jlr.M081836

⦁ Santos MMR, Cavalcante ACFPS, Amaral LAD, Souza GHO, Santos BSD, Portugal LC, Bittencourt Junior FF, Troquez T, Rafacho BPM, Hiane PA, Santos EFD. Combination of cafeteria diet with intraperitoneally streptozotocin in rats. A type-2 diabetes model. Acta Cir Bras. 2021;36(7):360702. doi: 10.1590/ACB360702. DOI: https://doi.org/10.1590/acb360702

⦁ Alkhalidy H, Moore W, Wang Y, Luo J, McMillan RP, Zhen W, Zhou K, Liu D. The Flavonoid Kaempferol Ameliorates Streptozotocin-Induced Diabetes by Suppressing Hepatic Glucose Production. Molecules. 2018;23(9):2338. doi: 10.3390/molecules23092338. DOI: https://doi.org/10.3390/molecules23092338

⦁ Alruhaimi RS, Mostafa-Hedeab G, Abduh MS, Bin-Ammar A, Hassanein EHM, Kamel EM, Mahmoud AM. A flavonoid-rich fraction of Euphorbia peplus attenuates hyperglycemia, insulin resistance, and oxidative stress in a type 2 diabetes rat model. Front Pharmacol. 2023;14:1204641. doi: 10.3389/fphar.2023.1204641. DOI: https://doi.org/10.3389/fphar.2023.1204641

⦁ Chen YM, Lian CF, Sun QW, Wang TT, Liu YY, Ye J, Gao LL, Yang YF, Liu SN, Shen ZF, Liu YL. Ramulus Mori (Sangzhi) Alkaloids Alleviate High-Fat Diet-Induced Obesity and Nonalcoholic Fatty Liver Disease in Mice. Antioxidants (Basel). 2022 May 5;11(5):905. doi: 10.3390/antiox11050905. DOI: https://doi.org/10.3390/antiox11050905

⦁ Sun, S. F., Zhong, H. J., Zhao, Y. L., Ma, X. Y., Luo, J. B., Zhu, L., Zhang, Y. T., Wang, W. X., Luo, X. D., Geng, J. W. Indole alkaloids of Alstonia scholaris (L.) R. Br. alleviated nonalcoholic fatty liver disease in mice fed with high-fat diet. Nat Prod Bioprospect. 2022;12(1):14. doi: 10.1007/s13659-022-00335-2. DOI: https://doi.org/10.1007/s13659-022-00335-2

⦁ Eluehike N, Onoagbe I. Changes in organ and body weight, serum amylase and antidiabetic effects of tannins from Spondias mombin on streptozotocin-induced diabetic rats. J Insulin Resist. 2018;3(1):100272. ⦁ doi: 10.4102/jir.v3i1.40. DOI: https://doi.org/10.4102/jir.v3i1.40

⦁ Yu H, Zheng L, Xu L, Yin L, Lin Y, Li H, Liu K, Peng J. Potent effects of the total saponins from Dioscorea nipponica Makino against streptozotocin-induced type 2 diabetes mellitus in rats. Phytother Res. 2015;29(2):228-240. doi: 10.1002/ptr.5243. DOI: https://doi.org/10.1002/ptr.5243

⦁ Chen X, Tan F, Yi R, Mu J, Zhao X, Yang Z. Effects of Lactobacillus on Mice with Diabetes Induced by High-Fat Diet with Streptozotocin (STZ). Appl Sci. 2018; 8(8):1249. ⦁ doi: 10.3390/app8081249. DOI: https://doi.org/10.3390/app8081249

⦁ Zafa M, Naeem-ul-Hassan N S, Ahmed M, Ali K Z. Altered Liver Morphology and Enzymes in Streptozotocin Induced Diabetic Rats. In Int J Morphol. 2009;27(3):719-725. doi: 10.4067/S0717-95022009000300015. DOI: https://doi.org/10.4067/S0717-95022009000300015

⦁ Wang D, Zhou BY, Xiang L, Chen XY, Feng JX. Alanine aminotransferase as a risk marker for new-onset metabolic dysfunction-associated fatty liver disease. World J Gastroenterol. 2024; 30(25): 3132-3139. DOI: https://doi.org/10.3748/wjg.v30.i25.3132

⦁ Duan Y, Dai H, An Y, Cheng L, Shi L, Lv Y, Li H, Wang C, He C, Zhang H, Huang Y, Fu W, Meng Y, Zhao B. Mulberry Leaf Flavonoids Inhibit Liver Inflammation in Type 2 Diabetes Rats by Regulating TLR4/MyD88/NF-κB Signaling Pathway. Evid Based Complement Alternat Med. 2022;2022:3354062. doi: 10.1155/2022/3354062. DOI: https://doi.org/10.1155/2022/3354062

⦁ Ajiboye BO, Dada S, Fatoba HO, Lawal OE, Oyeniran OH, Adetuyi OY, Olatunde A, Taher M, Khotib J, Susanti D, Oyinloye BE. Dalbergiella welwitschia (Baker) Baker f. alkaloid-rich extracts attenuate liver damage in streptozotocin-induced diabetic rats. Biomed Pharmacother. 2023;168:115681. doi: 10.1016/j.biopha.2023.115681. DOI: https://doi.org/10.1016/j.biopha.2023.115681

⦁ Babby A, Elanchezhiyan E, Chandirasegaran S. Antihyperglycemic Effect Of Tannic Acid In Streptozotocin Induced Diabetic Rats. Int J Curr Res. 2014;6(3):5381-5385.

⦁ Arguello G, Balboa E, Arrese M, Zanlungo S. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta. 2015;1852(9):1765-1778. doi: 10.1016/j.bbadis.2015.05.015. DOI: https://doi.org/10.1016/j.bbadis.2015.05.015

⦁ Sabir U, Irfan HM, Alamgeer, Ullah A, Althobaiti YS, Asim MH. Reduction of Hepatic Steatosis, Oxidative Stress, Inflammation, Ballooning and Insulin Resistance After Therapy with Safranal in NAFLD Animal Model: A New Approach. J Inflamm Res. 2022;15:1293-1316. doi: 10.2147/JIR.S354878. DOI: https://doi.org/10.2147/JIR.S354878

⦁ Hotamisligil GS. Foundations of Immunometabolism and Implications for Metabolic Health and Disease. Immunity. 2017;47(3):406-420. doi: 10.1016/j.immuni.2017.08.009. DOI: https://doi.org/10.1016/j.immuni.2017.08.009

⦁ Andonova M, Dzhelebov P, Trifonova K, Yonkova P, Kostadinov N, Nancheva K, Ivanov V, Gospodinova K, Nizamov N, Tsachev I, Chernev C. Metabolic Markers Associated with Progression of Type 2 Diabetes Induced by

High-Fat Diet and Single Low Dose Streptozotocin in Rats. Vet Sci. 2023;10(7):431. doi: 10.3390/vetsci10070431. DOI: https://doi.org/10.3390/vetsci10070431

⦁ Yao Y, Yan L, Chen H, Wu N, Wang W, Wang D. Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids. Phytomedicine. 2020;77:153268. doi: 10.1016/j.phymed.2020.153268. DOI: https://doi.org/10.1016/j.phymed.2020.153268

⦁ Bansal P, Paul P, Mudgal J, Nayak PG, Pannakal ST, Priyadarsini KI, Unnikrishnan MK. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice. Exp Toxicol Pathol. 2012;64(6):651-658. doi: 10.1016/j.etp.2010.12.009. DOI: https://doi.org/10.1016/j.etp.2010.12.009

⦁ Tao Y, Zeng Y, Zeng R, Gou X, Zhou X, Zhang J, Nhamdriel T, Fan G. The total alkaloids of Berberidis Cortex alleviate type 2 diabetes mellitus by regulating gut microbiota, inflammation and liver gluconeogenesis. J Ethnopharmacol. 2025;337(Pt 3):118957. doi: 10.1016/j.jep.2024.118957. DOI: https://doi.org/10.1016/j.jep.2024.118957

⦁ Velayutham R, Sankaradoss N, Ahamed KF. Protective effect of tannins from Ficus racemosa in hypercholesterolemia and diabetes induced vascular tissue damage in rats. Asian Pac J Trop Med. 2012;5(5):367-373. doi: 10.1016/S1995-7645(12)60061-3. DOI: https://doi.org/10.1016/S1995-7645(12)60061-3

⦁ Misiakiewicz-Has K, Maciejewska-Markiewicz D, Rzeszotek S, Pilutin A, Kolasa A, Szumilas P, Stachowska E, Wiszniewska B. The Obscure Effect of Tribulus terrestris Saponins Plus Inulin on Liver Morphology, Liver Fatty Acids, Plasma Glucose, and Lipid Profile in SD Rats with and without Induced Type 2 Diabetes Mellitus. Int J Mol Sci. 2021;22(16):8680. doi: 10.3390/ijms22168680. DOI: https://doi.org/10.3390/ijms22168680

⦁ Middleton P, Vergis N. Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therap Adv Gastroenterol. 2021;14:17562848211031394. doi: 10.1177/17562848211031394. DOI: https://doi.org/10.1177/17562848211031394

⦁ Puri M, Sonawane S. Liver Sinusoidal Endothelial Cells in the Regulation of Immune Responses and Fibrosis in Metabolic Dysfunction-Associated Fatty Liver Disease. Int J Mol Sci. 2025;26(9):3988. doi: 10.3390/ijms26093988. DOI: https://doi.org/10.3390/ijms26093988

⦁ He Q, He W, Dong H, Guo Y, Yuan G, Shi X, Wang D, Lu F. Role of liver sinusoidal endothelial cell in metabolic dysfunction-associated fatty liver disease. Cell Commun Signal. 2024;22(1):346. doi: 10.1186/s12964-024-01720-9. DOI: https://doi.org/10.1186/s12964-024-01720-9

⦁ Wang X-K, Peng Z-G. Targeting Liver Sinusoidal Endothelial Cells: An Attractive Therapeutic Strategy to Control Inflammation in Nonalcoholic Fatty Liver Disease. Front Pharmacol. 2021;12:655557. doi: 10.3389/fphar.2021.655557 DOI: https://doi.org/10.3389/fphar.2021.655557

⦁ Zhang L, He S, Liu L, Huang J. Saponin monomers: Potential candidates for the treatment of type 2 diabetes mellitus and its complications. Phytother Res. 2024;38(7):3564-3582. doi: 10.1002/ptr.8229. DOI: https://doi.org/10.1002/ptr.8229