Computational Estimation of Compounds Isolated from Asarum geophilum as Potential Inhibitors of Janus Kinase 2 (JAK2) Protein
Main Article Content
Abstract
Asarum geophilum is a narrowly distributed species in Vietnam with significant untapped bioactive potential. Numerous compounds, predominantly flavonoids have been isolated from Asarum species. This study aimed to screen and evaluate the inhibitory potential of flavonoid compounds (1 – 18) isolated from Asarum geophilum against the JAK2 protein using computational models. The interaction of the isolated compounds with JAK2 protein was investigated in silico via molecular docking, and molecular dynamics simulations. The molecular docking study successfully positioned eighteen isolated compounds from Asarum geophilum within the Janus kinase 2 (JAK2) protein active site. The isolated compounds demonstrated binding affinities ranging from -6.630 to -9.521 kcal/mol (mean: -8.209 kcal/mol). Nine top-performing ligands (compounds 7, 8, 9, 11, 12, 13, 14, 16, and 18) with ΔGdock < -8.0 kcal/mol were selected for further analysis. Conformational studies revealed these lead compounds formed stable interactions with key JAK2 amino acid residues. Notably, compound 14 exhibited exceptional binding characteristics (ΔGLIE = -21.78 kcal/mol), with dissociation metrics significantly outperforming both other screened compounds and established JAK2 inhibitors. The ΔGLIE values for all leads (-8.35 to -21.78 kcal/mol) substantially exceeded those of reference inhibitors, suggesting superior target engagement potential.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Tamimi NA and Ellis P. Drug Development: From Concept to Marketing! Nephron Clin Pract. 2009; 113(3):c125-31. doi: 10.1159/000232592. DOI: https://doi.org/10.1159/000232592
Talevi A. Computer-Aided Drug Discovery and Design: Recent Advances and Future Prospects. Methods Mol Biol. 2024; 2714:1-20. doi: 10.1007/978-1-0716-3441-7_1. DOI: https://doi.org/10.1007/978-1-0716-3441-7_1
Gervasoni S, Malloci G, Bosin A, Vargiu AV, Zgurskaya HI, Ruggerone P. AB-DB: Force-Field Parameters, MD Trajectories, QM-Based Data, and Descriptors of Antimicrobials. Sci Data. 2022; 9(1):148. doi: 10.1038/s41597-022-01261-1. DOI: https://doi.org/10.1038/s41597-022-01261-1
da Silva Rocha SFL, Olanda CG, Fokoue HH, Sant'Anna CMR. Virtual Screening Techniques in Drug Discovery: Review and Recent Applications. Curr Top Med Chem. 2019; 19(19):1751-1767. doi: 10.2174/1568026619666190816101948. DOI: https://doi.org/10.2174/1568026619666190816101948
Slater O and Kontoyianni M. The Compromise of Virtual Screening and Its Impact on Drug Discovery. Expert Opin Drug Discov. 2019; 14(7):619-637. doi: 10.1080/17460441.2019.1604677. DOI: https://doi.org/10.1080/17460441.2019.1604677
Kumar N and Acharya V. Advances in Machine Intelligence-Driven Virtual Screening Approaches for Big-Data. Med Res Rev. 2024; 44(3):939-974. doi: 10.1002/med.21995. DOI: https://doi.org/10.1002/med.21995
Sykora VJ. Automated Virtual Screening. Methods Mol Biol. 2024; 2716:137-152. doi: 10.1007/978-1-0716-3449-3_6. DOI: https://doi.org/10.1007/978-1-0716-3449-3_6
Pinzi L and Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci. 2019; 20(18):4331. doi: 10.3390/ijms20184331. DOI: https://doi.org/10.3390/ijms20184331
Rahman N, Zafar H, Atia-Tul-Wahab, Sheikh S, Jabeen A, Choudhary MI. Drug Repurposing for the Identification of New Bcl-2 Inhibitors: In Vitro, STD-NMR, Molecular Docking, and Dynamic Simulation Studies. Life Sci. 2023; 334:122181. doi: 10.1016/j.lfs.2023.122181. DOI: https://doi.org/10.1016/j.lfs.2023.122181
Guedes IA, de Magalhães CS, Dardenne LE. Receptor–ligand molecular docking. Biophys Rev. 2014; 6:75–87. https://doi.org/10.1007/s12551-013-0130-2 DOI: https://doi.org/10.1007/s12551-013-0130-2
Guan Z, Zhang Q, Zhang Z, Zuo J, Chen J, Liu R, Savarin J, Broger L, Cheng P, Wang Q, Pei K, Zhang D, Zou T, Yan J, Yin P, Hothorn M, Liu Z.
Mechanistic insights into the regulation of plant phosphate homeostasis by the rice SPX2 – PHR2 complex. Nat Commun 13, 1581 (2022). https://doi.org/10.1038/s41467-022-29275-8 DOI: https://doi.org/10.1038/s41467-022-29275-8
Nguyen NT, Nguyen TH, Pham TNH, Huy NT, Bay MV, Pham MQ, Nam PC, Vu VV, Ngo ST. Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity. J Chem Inf Model. 2020; 60(1):204-211. doi: 10.1021/acs.jcim.9b00778. DOI: https://doi.org/10.1021/acs.jcim.9b00778
Mai NT, Lan NT, Vu TY, Duong PTM, Tung NT, Phung HTT. Estimation of the Ligand-Binding Free Energy of Checkpoint Kinase 1 Via Non-Equilibrium MD Simulations. J Mol Graph Model. 2020; 100:107648. doi: 10.1016/j.jmgm.2020.107648. DOI: https://doi.org/10.1016/j.jmgm.2020.107648
Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT Signaling Pathway. J Cell Sci. 2004; 117:1281–1283. DOI: https://doi.org/10.1242/jcs.00963
Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK-STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects. Drugs. 2017; 77(5):521-546. doi: 10.1007/s40265-017-0701-9. DOI: https://doi.org/10.1007/s40265-017-0701-9
O'Shea JJ, Holland SM, Staudt LM. JAKs and STATs in Immunity, Immunodeficiency, and Cancer. N Engl J Med. 2013; 368(2):161-170. doi: 10.1056/NEJMra1202117. DOI: https://doi.org/10.1056/NEJMra1202117
Menet CJ, Van Rompaey L, Geney R. Advances in the Discovery of Selective JAK Inhibitors. Prog Med Chem. 2013; 52:153–223. DOI: https://doi.org/10.1016/B978-0-444-62652-3.00004-1
Verstovsek S. Therapeutic Potential of JAK2 Inhibitors. ASH Educ Program Book. 2009; 636–642. DOI: https://doi.org/10.1182/asheducation-2009.1.636
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J, Li L. Evolving Cognition of the JAK-STAT Signaling Pathway: Autoimmune Disorders and Cancer. Signal Transduct Target Ther. 2023; 8(1):204. doi: 10.1038/s41392-023-01468-7. DOI: https://doi.org/10.1038/s41392-023-01468-7
Kashetsky N and Turchin I. Utilization of Topical Ruxolitinib in Dermatology: A Review. Skin Therapy Lett. 2023; 28(3):8-13.
Wu P, Nielsen TE, Clausen MH. FDA-Approved Small-Molecule Kinase Inhibitors. Trends Pharmacol Sci. 2015; 36:422–439. DOI: https://doi.org/10.1016/j.tips.2015.04.005
Williams NK, Bamert RS, Patel O, Wang C, Walden PM. Dissecting Specificity in the Janus Kinases: The Structures of JAK-Specific Inhibitors Complexed to the JAK1 and JAK2 Protein Tyrosine Kinase Domains. J Mol Biol. 2009; 387:219–232. DOI: https://doi.org/10.1016/j.jmb.2009.01.041
Liu H and Wang C. The Genus Asarum: A Review on Phytochemistry, Ethnopharmacology, Toxicology and Pharmacokinetics. J Ethnopharmacol. 2022; 282:114642. doi: 10.1016/j.jep.2021.114642. DOI: https://doi.org/10.1016/j.jep.2021.114642
Kim SJ, Gao Zhang C, Taek Lim J. Mechanism of Anti-Nociceptive Effects of Asarum sieboldii Miq. Radix: Potential Role of Bradykinin, Histamine and Opioid Receptor-Mediated Pathways. J Ethnopharmacol. 2003; 88(1):5-9. doi: 10.1016/s0378-8741(03)00181-8. DOI: https://doi.org/10.1016/S0378-8741(03)00181-8
Saeedi M, Vahedi-Mazdabadi Y, Rastegari A, Soleimani M, Eftekhari M, Akbarzadeh T, Khanavi M. Evaluation of Asarum europaeum L. Rhizome for the Biological Activities Related to Alzheimer’s Disease. Res J Pharmacogn. 2020; 7(3):25-33.
Fan X, Kong D, He S, Chen J, Jiang Y, Ma Z, Feng J, Yan H. Phenanthrene Derivatives from Asarum heterotropoides Showed Excellent Antibacterial Activity Against Phytopathogenic Bacteria. J Agric Food Chem. 2021; 69(48):14520-14529. doi: 10.1021/acs.jafc.1c04385. DOI: https://doi.org/10.1021/acs.jafc.1c04385
Le TT, Cao TQ, Ha MT, Han KH, Kim YB, Kim JA, Min BS. Structural Characterization and SARS-CoV-2 Inhibitory Effects of Alkaloids from the Roots of Asarum heterotropoides var. mandshuricum (Aristolochiaceae). Phytochem Lett. 2023; 56:57-66. DOI: https://doi.org/10.1016/j.phytol.2023.06.005
Park KH, Choi JH, Song YS, Kim GC, Hong JW. Ethanol Extract of Asiasari Radix Preferentially Induces Apoptosis in G361 Human Melanoma Cells by Differential Regulation of p53. BMC Complement Altern Med. 2019; 19(1):231. doi: 10.1186/s12906-019-2609-2. DOI: https://doi.org/10.1186/s12906-019-2609-2
Kim E, Kim HJ, Oh HN, Kwak AWW, Kim SN, Kang BY, Cho SS. Cytotoxic Constituents from the Roots of Asarum sieboldii in Human Breast Cancer Cells. Nat Prod Sci. 2019; 25(1):72-75. DOI: https://doi.org/10.20307/nps.2019.25.1.72
Li YL, Tian M, Yu J, Shang MY, Cai SQ. Studies on Morphology and Aristolochic Acid Analogue Constituents of Asarum campaniflorum and a Comparison with Two Official Species of Asari Radix et Rhizoma. J Nat Med. 2010; 64:442–451. DOI: https://doi.org/10.1007/s11418-010-0433-6
Jing Y, Zhang YF, Shang MY, Liu GX, Li YL, Wang X, Cai SQ. Chemical Constituents from the Roots and Rhizomes of Asarum heterotropoides var. mandshuricum and the In Vitro Anti-Inflammatory Activity. Molecules. 2017; 22(1):125. doi: 10.3390/molecules22010125. DOI: https://doi.org/10.3390/molecules22010125
Shuai LV, Di W, Zhao W, Gao H, Sun B, Wu L. Isolation and Identification of Chemical Constituents from Roots of Asarum heterotropides Fr Schmidt. var. mandshuricum (Maxim.) Kitag. (II). J Shenyang Pharm Univ. 2010; 27(9):707-710.
Perumalsamy H, Chang KS, Park C, Ahn YJ. Larvicidal Activity of Asarum heterotropoides Root Constituents Against Insecticide-Susceptible and -Resistant Culex pipiens pallens and Aedes aegypti and Ochlerotatus togoi. J Agric Food Chem. 2010; 58:10001-10006. DOI: https://doi.org/10.1021/jf102193k
Haque ASMT, Moon JN, Saravana PS, Tilahun A, Chun BS. Composition of Asarum heterotropoides var. mandshuricum Radix Oil from Different Extraction Methods and Activities Against Human Body Odor-Producing Bacteria. J Food Drug Anal. 2016; 24(4):813-821. doi:
10.1016/j.jfda.2016.04.006. DOI: https://doi.org/10.1016/j.jfda.2016.04.006
Hu YJ, Zhou H, Wang JG, Zhang Y, Li YK. The Pharmacological Effect of “Xi Xin” Oil. Chem Pharm Bull (Tokyo). 1986; 2:41–44.
Pham THM, Do TL, Nguyen TT, Nguyen THV, Pham MQ, Vu TTL, Phan TTH, Nguyen HH, Phan VK, Nguyen XN. Chemical Constituents of Asarum geophilum Hemsl. and Their Hepatoprotective Effect. Phytochem Lett. 2022; 51:46-49. doi: 10.1016/j.phytol.2022.07.003. DOI: https://doi.org/10.1016/j.phytol.2022.07.003
Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model. 2021; 61(8):3891-3898. doi: 10.1021/acs.jcim.1c00203. DOI: https://doi.org/10.1021/acs.jcim.1c00203
O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An Open Chemical Toolbox. J Cheminform. 2011; 3:33. doi: 10.1186/1758-2946-3-33. DOI: https://doi.org/10.1186/1758-2946-3-33
Halgren TA. MMFF VI. MMFF94s Option for Energy Minimization Studies. J Comput Chem. 1999; 20(7):720-729. DOI: https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: Fast, Flexible, and Free. J Comput Chem. 2005; 26(16):1701-1718. doi: 10.1002/jcc.20291. DOI: https://doi.org/10.1002/jcc.20291
Sheik Amamuddy O, Musyoka TM, Boateng RA, Zabo S, Tastan Bishop Ö. Determining the Unbinding Events and Conserved Motions Associated with the Pyrazinamide Release Due to Resistance Mutations of Mycobacterium tuberculosis Pyrazinamidase. Comput Struct Biotechnol J. 2020; 18:1103-1120. doi: 10.1016/j.csbj.2020.05.009. DOI: https://doi.org/10.1016/j.csbj.2020.05.009
Case DA, Aktulga HM, Belfon K, Cerutti DS, Cisneros GA, Cruzeiro VWD, Merz JKM. AmberTools. J Chem Inf Model. 2023; 63(20):6183–6191. DOI: https://doi.org/10.1021/acs.jcim.3c01153
Nyambura CW, Nance E, Pfaendtner J. Examining the Effect of Polymer Extension on Protein-Polymer Interactions That Occur During Formulation of Protein-Loaded Poly(lactic acid-co-glycolic acid)-Polyethylene Glycol Nanoparticles. Polymers (Basel). 2022; 14(21):4730. doi: 10.3390/polym14214730. DOI: https://doi.org/10.3390/polym14214730
Rio T, Kazuhiro JF, Naho H, Zheng-Yu W, Takeshi Y. Significant Effects of Excitonic Coupling and Charge Transfer on the Circular Dichroism Spectrum of Photosynthetic Light-Harvesting I Complex. J Phys Chem B. 2025; 129(25):6153-6162. doi: 10.1021/acs.jpcb.5c02145. DOI: https://doi.org/10.1021/acs.jpcb.5c02145
Mai NT, Lan NT, Vu TY, Tung NT, Phung HTT. A Computationally Affordable Approach for Accurate Prediction of the Binding Affinity of JAK2 Inhibitors. J Mol Model. 2022; 28(6):163. doi: 10.1007/s00894-022-05149-0. DOI: https://doi.org/10.1007/s00894-022-05149-0
Le VTT, Hung DV, Quy BM, Minh PTH, Lam DT. Hepatoprotective Effect of Millettia dielsiana: In Vitro and In Silico Study. Molecules. 2022; 27(24):8978. doi: 10.3390/molecules27248978. DOI: https://doi.org/10.3390/molecules27248978
Tam NM, Pham MQ, Ha NX, Nam PC, Phung HTT. Computational Estimation of Potential Inhibitors from Known Drugs Against the Main Protease of SARS-CoV-2. RSC Adv. 2021; 11(28):17478-17486. doi: 10.1039/d1ra02529e. DOI: https://doi.org/10.1039/D1RA02529E
Le VTT, Hung HV, Ha NX, Le CH, Minh PTH, Lam DT. Natural Phosphodiesterase-4 Inhibitors with Potential Anti-Inflammatory Activities from Millettia dielsiana. Molecules. 2023; 28(21):7253. doi: 10.3390/molecules28217253. DOI: https://doi.org/10.3390/molecules28217253
Guo Y, Hu K, Li Y, Lu C, Ling K, Cai C, Wang W, Ye D. Targeting TNF-α for COVID-19: Recent Advanced and Controversies. Front Public Health. 2022; 10:833967. doi: 10.3389/fpubh.2022.833967. DOI: https://doi.org/10.3389/fpubh.2022.833967
Gohlke H, Hendlich M, Klebe G. Knowledge-Based Scoring Function to Predict Protein-Ligand Interactions. J Mol Biol. 2000; 295(2):337-56. doi: 10.1006/jmbi.1999.3371. DOI: https://doi.org/10.1006/jmbi.1999.3371


