Correlation-Driven Analysis of Synergistic Effects of Dual Medicinal Mushroom Extracts in a DMBA-Induced Murine Breast Cancer Model
Main Article Content
Abstract
Breast cancer remains a major global health burden, necessitating the development of safer, multi-targeted therapeutic approaches. This study evaluated the dose-response correlation between ethanol extracts of dual medicinal mushrooms (EECT) and therapeutic outcomes in a 7,12-dimethylbenz[a]anthracene (DMBA)-induced murine breast cancer model. Female mice were orally administered EECT at doses of 300, 400, and 500 mg/kg over 30 weeks. Therapeutic efficacy was assessed through body weight gain, tumor volume and weight, and serum TNF-α levels. Pearson correlation analyses revealed statistically significant dose-dependent effects, including increased body weight gain (r = 0.976, p = 0.024), reduced tumor volume and weight (r = 0.427, p = 0.0419), and a strong inverse correlation with TNF-α levels (r = -0.994, p = 0.0478), indicating potent anti-inflammatory activity. These findings underscore a robust, measurable correlation between EECT dosage and multiple therapeutic endpoints. The synergistic cytotoxic and immunomodulatory actions of the dual mushroom extract contributed to the suppression of tumor progression, systemic inflammation, and physiological deterioration. EECT demonstrated strong dose-dependent therapeutic potential, supporting its application as a promising integrative intervention for breast cancer management.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S, Soerjomataram I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast. 2022;66:15–23. Doi: 10.1016/j.breast.2022.08.010 DOI: https://doi.org/10.1016/j.breast.2022.08.010
2. Zafar A, Khatoon S, Khan MJ, Abu J, Naeem A. Advancements and limitations in traditional anti-cancer therapies: a comprehensive review of surgery, chemotherapy, radiation therapy, and hormonal therapy. Discov Oncol. 2025;16:607. Doi: 10.1007/s12672-025-02198-8 DOI: https://doi.org/10.1007/s12672-025-02198-8
3. Hasan-Abad AM, Atapour A, Sobhani-Nasab A, Motedayyen H, ArefNezhad R. Plant-Based Anticancer Compounds With a Focus on Breast Cancer. Cancer Rep (Hoboken). 2024;7(10):e70012. Doi: 10.1002/cnr2.70012 DOI: https://doi.org/10.1002/cnr2.70012
4. Khunoana ET, Nkadimeng SM. Current Advances in the Use of Mushrooms as Therapeutics for Lung Cancer: A Review. Molecules. 2025;30(6):1322. Doi: 10.3390/molecules30061322 DOI: https://doi.org/10.3390/molecules30061322
5. Jo E, Jang HJ, Shen L, Yang KE, Jang MS, Huh YH, Yoo HS, Park J, Jang IS, Park SJ. Cordyceps militaris Exerts Anticancer Effect on Non–Small Cell Lung Cancer by Inhibiting Hedgehog Signaling via Suppression of TCTN3. Integr Cancer Ther. 2020;19:1534735420923756. Doi:
10.1177/1534735420923756 DOI: https://doi.org/10.1177/1534735420923756
6. Habtemariam S. Trametes versicolor (Synn. Coriolus versicolor) Polysaccharides in Cancer Therapy: Targets and Efficacy. Biomedicines. 2020;8(5):135. Doi: 10.3390/biomedicines8050135 DOI: https://doi.org/10.3390/biomedicines8050135
7. Hori Y, Fujita H, Hiruma K, Narisawa K, Toju H. Synergistic and Offset Effects of Fungal Species Combinations on Plant Performance. Front Microbiol. 2021;12:713180. Doi: 10.3389/fmicb.2021.713180 DOI: https://doi.org/10.3389/fmicb.2021.713180
8. Nhung TTP, Quoc LPT. Assessment of the Acute and Chronic Toxicity Studies of Ethanol Extract of Blumea balsamifera (L.) DC. Leaves on Murine Models. Trop J Nat Prod Res. 2024; 8(2):6224-6233. Doi. 10.26538/tjnpr/v8i2.20 DOI: https://doi.org/10.26538/tjnpr/v8i2.20
9. Nhung TT, Quoc LPT. Analgesic and Antipyretic Activities of Ethanol Extract of Gardenia jasminoides Ellis Fruits in Mice. Trop J Nat Prod Res. 2023;7(10):4902–4907. Doi: 10.26538/tjnpr/v7i10.27 DOI: https://doi.org/10.26538/tjnpr/v7i10.27
10. Tran TPN, Nguyen TT, Tran GB. Anti-arthritis effect of ethanol extract of Sacha inchi (Plukenetia volubilis L.) leaves against complete Freund’s adjuvant-induced arthritis model in mice. Trop Life Sci Res. 2023;34(3):237–257. Doi: 10.21315/tlsr2023.34.3.13 DOI: https://doi.org/10.21315/tlsr2023.34.3.13
11. Basel AA. Basel’s declaration defends animal research. Nature. 2010;468:742. Doi: 10.1038/468742a DOI: https://doi.org/10.1038/468742a
12. Plante I. Dimethylbenz(a)anthracene-induced mammary tumorigenesis in mice. Methods Cell Biol. 2021;163:21–44. Doi: 10.1016/bs.mcb.2020.09.003 DOI: https://doi.org/10.1016/bs.mcb.2020.09.003
13. Tran TPN, Tran TTN. Ethanol extract of black shallot (Allium ascalonicum Linnaeus) for breast cancer prevention: evidence from a DMBA-induced mouse model. Adv Tradit Med. 2024;186:1–18. Doi: 10.1007/s13596-024-00781-y DOI: https://doi.org/10.1007/s13596-024-00781-y
14. Machida Y, Imai T. Different properties of mammary carcinogenesis induced by two chemical carcinogens, DMBA and PhIP, in heterozygous BALB/c Trp53 knockout mice. Oncol Lett. 2021;22(4):738. Doi: 10.3892/ol.2021.12999 DOI: https://doi.org/10.3892/ol.2021.12999
15. Nicotra R, Lutz C, Messal HA, Jonkers J. Rat models of hormone receptor-positive breast cancer. J Mammary Gland Biol Neoplasia. 2024;29(1):12. Doi: 10.1007/s10911-024-09566-0 DOI: https://doi.org/10.1007/s10911-024-09566-0
16. Juarez MN, McDermott A, Wade MG, Plante I. Exposure to brominated flame retardants in utero and through lactation delays the development of DMBA-induced mammary cancer: potential effects on subtypes? Front Endocrinol (Lausanne). 2024;15:1429142. Doi:
10.3389/fendo.2024.1429142 DOI: https://doi.org/10.3389/fendo.2024.1429142
17. Nhung TTP. Tumor inhibitory potential of ethanol extracts of Cordyceps (Cordyceps militaris) and Yunzhi mushroom (Trametes versicolor) on DMBA-induced breast cancer in Swiss albino mice. J Sci Technol. 2022;59(2):17–29. Doi: 10.46242/jstiuh.v59i05.4589 DOI: https://doi.org/10.46242/jstiuh.v59i05.4589
18. Galvano E, Pandit H, Sepulveda J, Ng CAS, Becher MK, Mandelblatt JS, Van Dyk K, Rebeck GW. Behavioral and transcriptomic effects of the cancer treatment tamoxifen in mice. Front Neurosci. 2023;17:1068334. Doi: 10.3389/fnins.2023.1068334 DOI: https://doi.org/10.3389/fnins.2023.1068334
19. Suckow MA, Fallon MT. The ARRIVE 2.0 guidelines: importance and full adoption by AALAS journals. Comp Med. 2024;74(5):307–312. Doi: 10.30802/AALAS-CM-24-061 DOI: https://doi.org/10.30802/AALAS-CM-24-061
20. Cheng CF, Lu CW, Wu WJ, Su LY, Nguyen TKN, Shen SC, Lien CY, Chuang WC, Lee MC, Wu CH. Therapeutic effects of plant extracts of Anoectochilus roxburghii on side effects of chemotherapy in BALB/c breast cancer mice. Plants. 2023;12(13):2494. Doi: 10.3390/plants12132494 DOI: https://doi.org/10.3390/plants12132494
21. Prakash J, Kumar C, Kujur AJ, Kumar S, Kumar A. Anti-cancerous effect of Amomum subulatum against DMBA-induced breast cancer in rats. J Cancer Sci Clin Ther. 2023;8(1):1–9. Doi: 10.26502/jcsct.5079221 DOI: https://doi.org/10.26502/jcsct.5079221
22. Awuchi CG. The biochemistry, toxicology, and uses of the pharmacologically active phytochemicals: alkaloids, terpenes, polyphenols, and glycosides. J Food Pharm Sci. 2019;7(3):131–150. Doi: 10.22146/jfps.666 DOI: https://doi.org/10.22146/jfps.666
23. Zahra M, Abrahamse H, George BP. Flavonoids: antioxidant powerhouses and their role in nanomedicine. Antioxidants (Basel).
2024;13(8):922. Doi: 10.3390/antiox13080922 DOI: https://doi.org/10.3390/antiox13080922
24. Ciupei D, Colişar A, Leopold L, Stănilă A, Diaconeasa ZM. Polyphenols: from classification to therapeutic potential and bioavailability. Foods. 2024;13(24):4131. Doi: 10.3390/foods13244131 DOI: https://doi.org/10.3390/foods13244131
25. Duda-Madej A, Viscardi S, Szewczyk W, Topola E. Natural alkaloids in cancer therapy: berberine, sanguinarine, and chelerythrine against colorectal and gastric cancer. Int J Mol Sci. 2024;25(15):8375. Doi: 10.3390/ijms25158375 DOI: https://doi.org/10.3390/ijms25158375
26. Ma C, Gao L, Song K, Gu B, Wang B, Pu W, Chen H. Exploring the therapeutic potential of diterpenes in gastric cancer: mechanisms, efficacy, and clinical prospects. Biomol Biomed. 2025;25(1):1–15. Doi: 10.17305/bb.2024.10887 DOI: https://doi.org/10.17305/bb.2024.10887
27. Mecca M, Sichetti M, Giuseffi M, Giglio E, Sabato C, Sanseverino F, Marino G. Synergic role of dietary bioactive compounds in breast cancer chemoprevention and combination therapies. Nutrients. 2024;16(12):1883. Doi: 10.3390/nu16121883 DOI: https://doi.org/10.3390/nu16121883
28. Thepmalee C, Jenkham P, Ramwarungkura B, Suwannasom N, Khoothiam K, Thephinlap C, Sawasdes N, Panya A, Yenchitsomanus P. Enhancing cancer immunotherapy using cordycepin and Cordyceps militaris extract to sensitize cancer cells and modulate immune responses.
Sci Rep. 2024;14:21907. Doi: 10.1038/s41598-024-72833-x
29. Ray P, Kundu S, Paul D. Exploring the therapeutic properties of Chinese mushrooms with a focus on their anti-cancer effects: a systemic review. Pharmacol Res Mod Chin Med. 2024;11:100433. Doi: 10.1016/j.prmcm.2024.100433 DOI: https://doi.org/10.1016/j.prmcm.2024.100433
30. Nowakowski P, Markiewicz-Żukowska R, Bielecka J, Mielcarek K, Grabia M, Socha K. Treasures from the forest: evaluation of mushroom extracts as anti-cancer agents. Biomed Pharmacother. 2021;143:112106. Doi: 10.1016/j.biopha.2021.112106 DOI: https://doi.org/10.1016/j.biopha.2021.112106
31. Khan MS, Butler J, Anker M. Weight gain among cancer patients receiving chemotherapy—facts and numbers. J Cachexia Sarcopenia Muscle. 2025;16(1):e13694. Doi: 10.1002/jcsm.13694 DOI: https://doi.org/10.1002/jcsm.13694
32. Diaz MB, Rohm M, Herzig S. Cancer cachexia: multilevel metabolic dysfunction. Nat Metab. 2024;6(12):2222–2245. Doi: 10.1038/s42255-024-01167-9 DOI: https://doi.org/10.1038/s42255-024-01167-9
33. Sharma H, Sharma N, An SSA. Unique bioactives from zombie fungus (Cordyceps) as promising multitargeted neuroprotective agents. Nutrients. 2023;16(1):102. Doi: 10.3390/nu16010102 DOI: https://doi.org/10.3390/nu16010102
34. Standish LJ, Wenner CA, Sweet ES, Bridge C, Nelson A, Martzen M, Novack J, Torkelson CT. Trametes versicolor mushroom immune therapy in breast cancer. J Soc Integr Oncol. 2018;6(3):122–128.
35. Thepmalee C, Jenkham P, Ramwarungkura B, Suwannasom N, Khoothiam K, Thephinlap C, Sawasdee N, Panya A, Yenchitsomanus P. Enhancing cancer immunotherapy using cordycepin and Cordyceps militaris extract to sensitize cancer cells and modulate immune responses.
Sci Rep. 2024;14(1):21907. Doi: 10.1038/s41598-024-72833-x DOI: https://doi.org/10.1038/s41598-024-72833-x
36. Prakash J, Kumar C, Kujur AJ, Kumar S, Kumar A. Anti-tumour effect of Mangifera indica against DMBA-induced breast cancer in rats. J Cancer Sci Clin Ther. 2023;7:204–211. DOI: https://doi.org/10.26502/jcsct.5079213
37. Lin LT, Lai YJ, Wu SC, Hsu WH, Tai CJ. Optimal conditions for cordycepin production in surface liquid-cultured Cordyceps militaris treated with porcine liver extracts for suppression of oral cancer. J Food Drug Anal. 2018;26(1):135–144. Doi: 10.1016/j.jfda.2016.11.021 DOI: https://doi.org/10.1016/j.jfda.2016.11.021
38. He Z, Lin J, He Y, Liu S. Polysaccharide-peptide from Trametes versicolor: the potential medicine for colorectal cancer treatment. Biomedicines. 2022;10(11):2841. Doi: 10.3390/biomedicines10112841
39. Torkelson CJ, Sweet E, Martzen MR, Sasagawa M, Wenner CA, Gay J, Putiri A, Standish LJ. Phase 1 clinical trial of Trametes versicolor in women with breast cancer. Oncol. 2012;2012:251632. Doi: 10.5402/2012/251632 DOI: https://doi.org/10.5402/2012/251632
40. Jin CY, Choi YH, Kim GY. Induction of apoptosis by aqueous extract of Cordyceps militaris through activation of caspases and inactivation of Akt in human breast cancer MDA-MB-231 cells. J Microbiol Biotechnol. 2018;18(12):1997–2004.
41. Jo E, Jang HJ, Yang KE, Jang MS, Huh YH, Yoo HS, Park JS, Jang IS, Park SJ. Cordyceps militaris induces apoptosis in ovarian cancer cells through TNF-α/TNFR1-mediated inhibition of NF-κB phosphorylation. BMC Complement Med Ther. 2020;20:1. Doi: 10.1186/s12906-019-2780-5
42. He Z, Lin J, He Y, Liu S. Polysaccharide-peptide from Trametes versicolor: the potential medicine for colorectal cancer treatment. Biomedicines. 2022;10(11):2841. Doi: 10.3390/biomedicines10112841 DOI: https://doi.org/10.3390/biomedicines10112841
43. Bell V, Silva CRPG, Guina J, Fernandes TH. Mushrooms as future generation healthy foods. Front Nutr. 2022;9:1050099. Doi: 10.3389/fnut.2022.1050099 DOI: https://doi.org/10.3389/fnut.2022.1050099
44. Jo E, Jang HJ, Yang KE, Jang MS, Huh YH, Yoo HS, Park JS, Jang IS, Park SJ. Cordyceps militaris induces apoptosis in ovarian cancer cells through TNF-α/TNFR1-mediated inhibition of NF-κB phosphorylation. Complement Med Ther. 2020;20:1–12. Doi: 10.1186/s12906-019-2780-5 DOI: https://doi.org/10.1186/s12906-019-2780-5
45. Saleh MH, Rashedi I, Keating A. Immunomodulatory properties of Coriolus versicolor: the role of polysaccharopeptide. Front Immunol. 2017;8:1087. Doi: 10.3389/fimmu.2017.01087 DOI: https://doi.org/10.3389/fimmu.2017.01087


