Bibliometric Analysis of Liquid Biofuel from Phoenix dactylifera (Date Palm) Waste

Main Article Content

Karim Elouahbi
Hamza Taoumi
Khadija Lahrech

Abstract

Lignocellulosic wastes, and their conversion into value-added products such as bioethanol have been the subject of many research. This study aimed to carry out a bibliometric analysis of the most numerous scientific works on the production of ethanol from date waste. Using the Scopus database, VOSviewer and Citespace visualization software, this study analyzed 317 articles published between 2014 and 2023 on bioethanol production from dates. The results showed that the number of articles published between 2014 and 2023 reflects the growing interest in this field of research. Abasaeed Ahmed Elhag is the most prolific author who has published 8 articles in this field. Biotechnology for Biofuels is the most productive journal, with 16 publications. Renewable and Sustainable Energy Reviews, on the other hand, achieved the highest number of citations (588), underlining its impact and influence in the field of renewable energy research. The results of the study also showed that the United States is the most productive country in this field, with 172 publications reflecting the significant interest in, and investment in, renewable energy research in this country. The main themes and approaches used in the research on bioethanol production from dates are ethanol, fermentation, biomass and Saccharomyces cerevisiae. The analysis showed a positive trend in research in this field. However, there is a need to broaden our knowledge of new technologies for the bioconversion of biomass into energy products, and to integrate new biomasses in order to overcome the obstacles, integrating this field into sustainable development.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Bibliometric Analysis of Liquid Biofuel from Phoenix dactylifera (Date Palm) Waste. (2025). Tropical Journal of Natural Product Research , 9(8), 3480-3489. https://doi.org/10.26538/tjnpr/v9i8.5

References

Elshobary M, Abdullah E, Abdel-Basset R, Metwally M, El-Sheekh M. Maximizing biofuel production from algal biomass: A study on biohydrogen and bioethanol production using Mg Zn ferrite nanoparticles. Algal Res. 2024; 81:103595. DOI: https://doi.org/10.1016/j.algal.2024.103595

Correa DF, Beyer HL, Possingham HP, Thomas-Hall SR, Schenk PM. Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels. Renew Sustain Energy Rev. 2017; 74:1131–1146. DOI: https://doi.org/10.1016/j.rser.2017.02.068

González-Gloria KD, Tomás-Pejó E, Amaya-Delgado L, Rodríguez-Jasso R. M, Loredo-Treviño A, Hans ASM, Martín C, Kumar S, and Ruiz H. A. Biochemical and Biorefinery Platform for Second-Generation Bioethanol: Fermentative Strategies and Microorganisms. Fermentation. 2024; 10(7):361. DOI: https://doi.org/10.3390/fermentation10070361

Fashola, Folake A, Ibidapo, Olubunmi I, Adaran, Adekunle S, Adebayo, Abiodun H, Chinedu, Shalom N. Assessment of Extract from Glucose Oxidase-Cellulase Treated Jute Sticks and Green Amaranth Sticks for the Production of Lignocellulose-Based Bioethanol. Trop J Nat Prod Res. 2025; 9(3):1280-1297. DOI: https://doi.org/10.26538/tjnpr/v9i3.53

Abdul Kareem JM, Ahmad M, Chen Y-F, Mustaqeem M, Ali A, Abbas A, Gondal MA. Trends and advances in sustainable bioethanol production technologies from first to fourth generation: A critical review. Energy Convers Manag. 2024; 321:119037. DOI: https://doi.org/10.1016/j.enconman.2024.119037

Güleç F, Parthiban A, Umenweke GC, Musa M, Williams O, Mortezaei Y, Suk-Oh H, Lester E, Ogbaga CC, Gunes B, Okolie JA. Progress in lignocellulosic biomass valorization for biofuels and value‐added chemical production in the EU : A focus on thermochemical conversion processes. Biofuels Bioprod Biorefining. 2024; 18(3):755–781. DOI: https://doi.org/10.1002/bbb.2544

Hassan Q. The renewable energy role in the global energy Transformations. Renew Energy Focus. 2024; 48:100545. DOI: https://doi.org/10.1016/j.ref.2024.100545

Bays HCM, Bolding MC, Conrad JL, Munro HL, Barrett SM, Peduzzi A. Assessing the sustainability of forest biomass harvesting practices in the southeastern US to meet European renewable energy goals. Biomass Bioenergy. 2024; 186:107267. DOI: https://doi.org/10.1016/j.biombioe.2024.107267

Igwebuike CM, Awad S, Andrès Y. Renewable Energy Potential: Second-Generation Biomass as Feedstock for Bioethanol Production. Molecules. 2024; 29(7):1619. DOI: https://doi.org/10.3390/molecules29071619

Rocha-Meneses L, Luna-delRisco M, González CA, Moncada SV, Moreno A, Sierra-Del Rio J, Castillo-Meza. An Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombia. Energies. 2023; 16(16):5901. DOI: https://doi.org/10.3390/en16165901

Kethiri MA, Belghar N, Chikhi M, Boutera Y, Beldjani C, Tedeschi C. Experimental Study on the Effect of Date Palm Powder on the Thermal and Physico-Mechanical Properties of Gypsum Mortars. Sustainability. 2024; 16(7):3015. DOI: https://doi.org/10.3390/su16073015

Magyar M, Jin M, Sousa LDC, Aleid SM, Al-Hajhoj MR, Sudhakar B, Balan V. Empty Fruit Bunch from Date Palm Industries—A Sustainable Resource for Producing Biofuels and Industrial Solvents. Ind Biotechnol. 2016; 12(4):235–244. DOI: https://doi.org/10.1089/ind.2015.0036

Rusănescu CO, Ciobanu M, Rusănescu M, Dinculoiu RL. Pretreatments Applied to Wheat Straw to Obtain Bioethanol. Appl Sci. 2024;14(4):1612. DOI: https://doi.org/10.3390/app14041612

Manai S, Boulila A, Silva AS, Barbosa-Pereira L, Sendón R, Khwaldia K. Recovering functional and bioactive compounds from date palm by-products and their application as multi-functional ingredients in food. Sustain Chem Pharm. 2024; 38:101475. DOI: https://doi.org/10.1016/j.scp.2024.101475

Shokrollahi S, Shavandi A, Valentine Okoro O, Denayer JFM, Karimi K. Sustainable biorefinery development for valorizing all wastes from date palm agroindustry. Fuel. 2024; 358:130291. DOI: https://doi.org/10.1016/j.fuel.2023.130291

Babiker ME, Aziz ARA, Heikal M, Yusup S. Pyrolysis Characteristics of Phoenix Dactylifera Date Palm Seeds Using Thermo-Gravimetric Analysis (TGA). Int J Environ Sci Dev. 2013; 521–524. DOI: https://doi.org/10.7763/IJESD.2013.V4.406

Musa KH and Elnour AAM. Advances and future perspectives in biotechnological and bioconversional of dates byproducts. J Agric Food Res. 2024; 16:101145. DOI: https://doi.org/10.1016/j.jafr.2024.101145

Kavvadias V, Guyader EL, Mazlouzi ME, Gommeaux M, Boumaraf B, Moussa M, Lamine H, Sbih M, Zoghlami IR, Guimeur K, Tirichine A, Adelfettah A, Marin B. Morvan X. Using Date Palm Residues to Improve Soil Properties: The Case of Compost and Biochar. Soil Syst. 2024; 8(3):69. DOI: https://doi.org/10.3390/soilsystems8030069

Abuhassna H, Awae F, Bayoumi K, Alzitawi DU, Alsharif AH, Yahaya N. Understanding Online Learning Readiness among University Students: A Bibliometric Analysis. Int J Interact Mob Technol. 2022; 16(13):81–94. DOI: https://doi.org/10.3991/ijim.v16i13.30605

Arruda H, Silva ER, Lessa M, Proença Jr. D, Bartholo R. VOSviewer and Bibliometrix. J Med Libr Assoc. 2022; 110(3):392–395. DOI: https://doi.org/10.5195/jmla.2022.1434

Catumba BD, Sales MB, Borges PT, Filho MNR, Lopes AAS, de Sousa Rios MA, Desai AS, Bilal M, Sousa dos Santos JC. Sustainability and challenges in hydrogen production: An advanced bibliometric analysis. Int J Hydrog Energy. 2023; 48(22):7975–7992. DOI: https://doi.org/10.1016/j.ijhydene.2022.11.215

Guimarães CEC, Neto FS, De Castro Bizerra V, Andrade do Nascimento J G, Valério RBR, Junior P G S, Braz A K, Fernandes Melo R L, Serpa J F, Lima R K C, Guimarães A P, Martins de Souza M C, Lopes AAS. Sustainable bioethanol production from first- and second-generation sugar-based feedstocks: Advanced bibliometric analysis. Bioresour Technol Rep. 2023; 23:101543. DOI: https://doi.org/10.1016/j.biteb.2023.101543

Jiang W, Aishan T, Halik Ü, Wei Z, Wumaier M. A. Bibliometric and Visualized Analysis of Research Progress and Trends on Decay and Cavity Trees in Forest Ecosystem over 20 Years: An Application of the CiteSpace Software. Forests. 2022; 13(9):1437. DOI: https://doi.org/10.3390/f13091437

Xie S, Li Z, Luo S, Zhang W. Bioethanol to jet fuel: Current status, challenges, and perspectives. Renew Sustain Energy Rev. 2024; 192:114240. DOI: https://doi.org/10.1016/j.rser.2023.114240

Liu Y and Huang Y. Assessing the interrelationship between fossil fuels resources and the biomass energy market for achieving a sustainable and green economy. Resour Policy 2024; 88:104397. DOI: https://doi.org/10.1016/j.resourpol.2023.104397

Fang C, Schmidt JE, Cybulska I, Brudecki GP, Frankær CG, Thomsen MH. Hydrothermal Pretreatment of Date Palm (Phoenix dactylifera L.) Leaflets and Rachis to Enhance Enzymatic Digestibility and Bioethanol Potential. BioMed Res Int. 2015; 2015:1–13. DOI: https://doi.org/10.1155/2015/216454

Madi F, Hachicha R, Rodriguez Gamero JE, Gupte AP, Gronchi N, Haddad M, Favaro L, Casella S, Basaglia M. Exploitation of spoilage dates as biomass for the production of bioethanol and polyhydroxyalkanoates. Renew Energy. 2024; 220:119655. DOI: https://doi.org/10.1016/j.renene.2023.119655

Ben Atitallah I, Arous F, Louati I, Zouari-Mechichi H, Brysch-Herzberg M, Woodward S, Mechichi S. Efficient bioethanol production from date palm (Phoenix dactylifera L.) sap by a newly isolated Saccharomyces cerevisiae X19G2. Process Biochem. 2021; 105:102–112. DOI: https://doi.org/10.1016/j.procbio.2021.03.019

Su Y, Zhang P, Su Y. An overview of biofuels policies and industrialization in the major biofuel producing countries. Renew Sustain Energy Rev. 2015; 50:991–1003. DOI: https://doi.org/10.1016/j.rser.2015.04.032

Volpe M, Ralli M, Isidori A. “The impact of the COVID-19 pandemic on research activities: A survey of the largest Italian academic community”. PLOS ONE 2024; 19(6):e0304078. DOI: https://doi.org/10.1371/journal.pone.0304078

Bracmort K. The Renewable Fuel Standard (RFS): An Overview. Congr Res Serv. 2022; Version 42:1-21

Canabarro NI, Silva-Ortiz P, Nogueira LAH, Cantarella H, Maciel-Filho R, Souza GM. Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala. Renew Sustain Energy Rev. 2023; 171:113019. DOI: https://doi.org/10.1016/j.rser.2022.113019

Mignogna D, Szabó M, Ceci P, Avino P. Biomass Energy and Biofuels: Perspective, Potentials, and Challenges in the Energy Transition. Sustainability. 2024; 16(16):7036. DOI: https://doi.org/10.3390/su16167036

Aggarwal M, Hutchison B, Katz A, Wong ST, Marshall EG, Slade S. Assessing the impact of Canadian primary care research and researchers: Citation analysis. Can Fam Physician. 2024; 70(5):329–341. DOI: https://doi.org/10.46747/cfp.7005329

Putra MD, Abasaeed AE, Atiyeh HK, Putra M D, Abasaeed A E, Atiyeh H A, Al-Zahrani S M, Gaily M H, Sulieman A K. Kinetic Modeling and Enhanced Production of Fructose and Ethanol From Date Fruit Extract. Chem Eng Commun. 2015; 202(12):1618–1627. DOI: https://doi.org/10.1080/00986445.2014.968711

Lynd L, Zyl W, Mcbride J, Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol. 2005; 16(5):577–583. DOI: https://doi.org/10.1016/j.copbio.2005.08.009

Putra MD, Abasaeed AE, Al-Zahrani SM. Prospective production of fructose and single cell protein from date palm waste. Electron J Biotechnol. 2020; 48:46–52. DOI: https://doi.org/10.1016/j.ejbt.2020.09.007

Kechkar M, Sayed W, Cabrol A, Aziza M, Zaid, T A, Amrane A, Djelal H. Isolation and identification of yeast strains from sugarcane molasses, dates and figs for ethanol production under conditions simulating algal hydrolysate. Braz J Chem Eng. 2019; 36(1):157–169. DOI: https://doi.org/10.1590/0104-6632.20190361s20180114

Tian L, Papanek B, Olson DG, Rydzak T, Holwerda EK, Zheng T, Zhou J, Maloney M, Jiang N, Giannone R J, Hettich R L, Guss A M, Lynd L R.

Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum. Biotechnol Biofuels 2016; 9(1):116. DOI: https://doi.org/10.1186/s13068-016-0528-8

Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G. Bioethanol production from renewable sources: Current perspectives and technological progress. Renew Sustain Energy Rev 2017; 71:475–501. DOI: https://doi.org/10.1016/j.rser.2016.12.076

Liu Y, Xie X, Liu W, Xu H, Cao Y. Consolidated Bioprocess for Bioethanol Production from Lignocellulosic Biomass Using Clostridium thermocellum DSM 1237. Bioresour. 2020; 15(4):8355-8368 DOI: https://doi.org/10.15376/biores.15.4.8355-8368

Sharma BD. Pyrophosphate-free glycolysis in Clostridium thermocellum increases both thermodynamic driving force and ethanol titers. 2024; Biotechnol Biofuels Bioprod. 2024; 17(1):146. DOI: https://doi.org/10.1186/s13068-024-02591-5

Geissler CH, Ryu J, Maravelias CT. The future of biofuels in the United States transportation sector. Renew Sustain Energy Rev. 2024; 192:114276. DOI: https://doi.org/10.1016/j.rser.2023.114276

Kumar D, Dutt S, Jaiswal AK, Kaundal B, Kumar D, Singh B. Bioethanol production from potatoes in India: A SWOT analysis. Heliyon 2024; 10(23):e40677. DOI: https://doi.org/10.1016/j.heliyon.2024.e40677

Wiatrowski M and Davis R. Algal Biomass Conversion to Fuels via Combined Algae Processing (CAP): 2022 State of Technology and Future Research. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5100-85662. https://www.nrel.gov/docs/fy23osti/85662.pdf. DOI: https://doi.org/10.2172/1866075

Wang Y and Liao Z. Functional industrial policy mechanism under natural resource conflict: A case study on the Chinese new energy vehicle industry. Resour Policy 2023; 81:103417. DOI: https://doi.org/10.1016/j.resourpol.2023.103417

Differding E. Biotechnology in India: An Analysis of ‘Biotechnology Industry Research Assistance Council’ (BIRAC)-Supported Projects. ChemBioChem. 2023; 38 p. DOI: https://doi.org/10.1002/cbic.202300302

Amran YHA, Amran YHM, Alyousef R, Alabduljabbar H. Renewable and sustainable energy production in Saudi Arabia according to Saudi Vision 2030; Current status and future prospects. J Clean Prod. 2020; 247:119602. DOI: https://doi.org/10.1016/j.jclepro.2019.119602

Tenkolu GA, Kuffi KD, Gindaba TG. Optimization of fermentation condition in bioethanol production from waste potato and product characterization. Biomass Conv Bioref. 2024; 14:5205–5223. DOI: https://doi.org/10.1007/s13399-022-02974-4

Van Dyk J, Görgens JF, Van Rensburg E. Enhanced ethanol production from paper sludge waste under high-solids conditions with industrial and cellulase-producing strains of Saccharomyces cerevisiae. Bioresour Technol. 2024; 394:130163. DOI: https://doi.org/10.1016/j.biortech.2023.130163

Pandey SP and Kumar S. Valorisation of argemone mexicana seeds to renewable fuels by thermochemical conversion process. J Environ Chem Eng. 2020; 8(5):104271. DOI: https://doi.org/10.1016/j.jece.2020.104271

Yan L and Du Y. Exploring Trends and Clusters in Human Posture Recognition Research: An Analysis Using CiteSpace. Sensors. 2025; 25(3):632. DOI: https://doi.org/10.3390/s25030632

Woźniak A, Kuligowski K, Świerczek L, Cenian A. Review of Lignocellulosic Biomass Pretreatment Using Physical, Thermal and Chemical Methods for Higher Yields in Bioethanol Production. Sustainability. 2025; 17(1):287. DOI: https://doi.org/10.3390/su17010287

Hosseinkhani H, Euring M, Kharazipour A. Utilization of Date palm (Phoenix dactylifera L.) Pruning Residues as Raw Material for MDF Manufacturing. J Mater Sci Res. 2014; 4(1):115-122. DOI: https://doi.org/10.5539/jmsr.v4n1p46

Carriquiry MA, Du X, Timilsina GR. Second generation biofuels: Economics and policies. Energy Policy. 2011; 39(7):4222–4234. DOI: https://doi.org/10.1016/j.enpol.2011.04.036

Chen X and Khanna M. Food vs. fuel: the effect of biofuel policies. Amer J Agr Econ. 2011; 95(2):289-295. DOI: https://doi.org/10.1093/ajae/aas039

Alsaiari RA, Musa EM, Rizk MA. Biodiesel production from date seed oil using hydroxyapatite-derived catalyst from waste camel bone. Heliyon. 2023; 9(5):e15606. DOI: https://doi.org/10.1016/j.heliyon.2023.e15606

Spatari S, Bagley DM, MacLean HL. Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies. Bioresour Technol. 2010; 101(2):654–667. DOI: https://doi.org/10.1016/j.biortech.2009.08.067

Liu ZL. Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol. 2006; 73(1):27–36. DOI: https://doi.org/10.1007/s00253-006-0567-3

Abd-Alla MH, Elsadek El-Enany A-W. Production of acetone-butanol-ethanol from spoilage date palm (Phoenix dactylifera L.) fruits by mixed culture of Clostridium acetobutylicum and Bacillus subtilis. Biomass Bioenergy. 2012; 42:172–178. DOI: https://doi.org/10.1016/j.biombioe.2012.03.006

Teetor VH, Duclos DV, Wittenberg ET, Young K M, Chawhuaymak J, Riley M R, Ray AT. Effects of planting date on sugar and ethanol yield of sweet sorghum grown in Arizona. Ind Crops Prod. 2011; 34(2):1293–1300. DOI: https://doi.org/10.1016/j.indcrop.2010.09.010

Safieddin Ardebili SM, Solmaz H, İpci D, Calam A, Mostafaei M. A review on higher alcohol of fusel oil as a renewable fuel for internal combustion engines: Applications, challenges, and global potential. Fuel. 2020; 279:118516. DOI: https://doi.org/10.1016/j.fuel.2020.118516

Chen Q, Jin Y, Zhang G, Fang Y, Xiao Y, Zhao H. Improving Production of Bioethanol from Duckweed (Landoltia punctata) by Pectinase Pretreatment. Energies. 2012; 5(8):3019–3032. DOI: https://doi.org/10.3390/en5083019