In vitro α-Glucosidase Inhibitory, Antioxidant and Anti-Colorectal Cancer Activities of Gourd (Coccinia grandis) Stems Fractions and its Compounds
Main Article Content
Abstract
Plant-derived agents from a medicinal plant Coccinia grandis, are known to have a considerably effect on several bioactivities. This present study evaluated the identified compounds on stem fractions of C. grandis through their antioxidant, anti-diabetes mellitus, and anti-colorectal cancer properties. Dried of C. grandis stems from Thailand were macerated with methanol and then fractionated with n-hexane and ethyl acetate. Each fraction was then assayed for antioxidant activities, anti-diabetes agent using rat intestinal a-glucosidase, and anti-colorectal cancer properties on HCT116 and SW620 cell lines. Ethyl acetate fractions were then subjected to further fractionation and compound identification. There were 7 identified compounds including caffeic acid, p-hydroxycoumaric acid, ferulic acid, 4-hydroxybenzaldehyde, methyl caffeate, syringaldehyde and vanillic acid. Methyl caffeate (IC50= 0.145mM) and ferulic acid (IC50= 0.057mM) have significant DPPH and ABTS radical scavenging activity, respectively. Caffeic acid had the strongest α-glucosidase inhibitory activity through both maltase (IC50= 0.732mM) and sucrase (IC50= 0.111mM), however it was not all that different from methyl caffeate. Methyl caffeate (IC50= 0.001mM) and caffeic acid (IC50= 0.085mM) exhibited anti-colorectal cancer effects against HCT116 and SW620, respectively. The kinetic investigation of methyl caffeate indicated that it retarded maltase function in a competitive manner and sucrase function in an uncompetitive manner. Regarding the results, it demonstrated that certain active compounds of C. grandis stems have their promising action on those bioactivities assay and have potent charges as drug candidates against oxidative stress, diabetes mellitus, and colorectal cancer diseases.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D. Diabetes and cancer: a consensus report. CA Cancer J Clin. 2010;60(4):207-221. DOI: https://doi.org/10.3322/caac.20078
Wojciechowska J, Krajewski W, Bolanowski M, Kręcicki T, Zatoński T. Diabetes and cancer: a review of current knowledge. Exp Clin Endocrinol Diabetes. 2016;124(05):263-275. DOI: https://doi.org/10.1055/s-0042-100910
Eleazu CO, Eleazu KC, Chukwuma SC, Okoronkwo J, Emelike CU. Effect of livingstonepotato (Plectranthus esculenthus NE Br) on hyperglycemia, antioxidant activity and lipid metabolism of streptozotocin induced diabetic rats. Toxicol reports. 2014;1:674-681. DOI: https://doi.org/10.1016/j.toxrep.2014.08.013
Neamsuvan O, Komonhiran P, Boonming K. Medicinal plants used for hypertension treatment by folk healers in Songkhla province, Thailand. J Ethnopharmacol. 2018;214:58-70.. DOI: https://doi.org/10.1016/j.jep.2017.11.032
Bussmann RW, Paniagua-Zambrana NY, Njoroge GN. Coccinia grandis (L.) Voigt C ucurbitaceae. Ethnobot Mt Reg Africa. Published online 2021:309-311. DOI: https://doi.org/10.1007/978-3-030-38386-2_44
Hossaina MS, Jahan I, Islam M, Nayeem J, Anzum TS, Afrin NA, Mim FK, Hasan K. Coccinia grandis: Phytochemistry, pharmacology and health benefits. Clin Tradit Med and Pharmacol. 2024;5(2):200150-200169 DOI: https://doi.org/10.1016/j.ctmp.2024.200150
Pickering E, Steels E, Castaneda R, Steadman KJ. Effect of Coccinia grandis (Linn.) Voigt extract on glucose metabolism markers in a prediabetic population: A double-blind randomised clinical trial. Phytomedicine Plus. 2023;3(4):100487. DOI: https://doi.org/10.1016/j.phyplu.2023.100487
Rahman M, Humaira T, Chowdhury U. Bioprospecting of Coccinia grandis (L.) Voigt leaf: a wild nutraceutical of Bangladesh. Adv Med Plant Res. 2023;11:1-8.
Meenatchi P, Purushothaman A, Maneemegalai S. Antioxidant, antiglycation and insulinotrophic properties of Coccinia grandis (L.) in vitro: Possible role in prevention of diabetic complications. J Tradit Complement Med. 2017;7(1):54-64. DOI: https://doi.org/10.1016/j.jtcme.2016.01.002
Packirisamy M, Ayyakkannu P, Sivaprakasam M. Antidiabetic effect of Coccinia grandis (L.) Voigt (Cucurbitales: Cucurbitaceae) on streptozotocin induced diabetic rats and its role in regulating carbohydrate metabolizing enzymes. Brazilian J Biol Sci. 2018;5(11):683-698. DOI: https://doi.org/10.21472/bjbs.051107
Sampathkumar P, Prabhakaran K, Dheeba B, Vinothkannan R, Vinothprasanna G, Sheikabdulla S. Antitumour promoting potential of Coccinia indica against benzidine induced hepatocellular carcinoma in mice. J Cell Tissue Res. 2008;8(3):1599.
Siddiqua S, Jyoti FH, Saffoon N, et al. Ethanolic extract of Coccinia grandis prevented glucose intolerance, hyperlipidemia and oxidative stress in high fat diet fed rats. Phytomedicine Plus. 2021;1(4):100046. DOI: https://doi.org/10.1016/j.phyplu.2021.100046
Osiako FH, Samuel BB, Oluyemi WM. Effects of Selected Terminalia and Ficus Species in the Inhibition of α-Amylase and α-Glucosidase Enzymes. Trop J Nat Prod Res. 2023;7(8). DOI: https://doi.org/10.26538/tjnpr/v7i8.31
Heinzerling P, Schrader F, Schanze S. Measurement of enzyme kinetics by use of a blood glucometer: hydrolysis of sucrose and lactose. J Chem Educ. 2012;89(12):1582-1586. DOI: https://doi.org/10.1021/ed200735f
Gaber NB, El-Dahy SI, Shalaby EA. Comparison of ABTS, DPPH, permanganate, and methylene blue assays for determining antioxidant potential of successive extracts from pomegranate and guava residues. Biomass Convers Biorefinery. Published online 2021:1-10. doi:10.1007/s13399-021-01386-0 DOI: https://doi.org/10.1007/s13399-021-01386-0
Ekasari CP, Widyarti S, Sumitro SB. The analysis of antioxidant activity and capacity of boiled and infused Indonesian herbals. Published online 2023.
Daddiouaissa D, Amid A, Kabbashi NA, Fuad FAA, Elnour AAM, Epandy MAKMS. Antiproliferative activity of ionic liquid-graviola fruit extract against human breast cancer (MCF-7) cell lines using flow cytometry techniques. J Ethnopharmacol. 2019;236(February):466-473. doi:10.1016/j.jep.2019.03.003 DOI: https://doi.org/10.1016/j.jep.2019.03.003
Haryanti S, Ratnawati G, Rahmawati N. Curcuma zanthorrhiza Extracts Induce G2/M cell cycle arrest and apoptosis in 4T1 and MCF-7 human breast cancer cells. In: 4th International Symposium on Health Research (ISHR 2019). Atlantis Press; 2020:415-419. DOI: https://doi.org/10.2991/ahsr.k.200215.079
Yu GH, Li SF, Wei R, Jiang Z. Diabetes and colorectal cancer risk: clinical and therapeutic implications. J Diabetes Res. 2022;2022(1):1747326. DOI: https://doi.org/10.1155/2022/1747326
Nascimento JB do, Viturino JJF, Ribeiro MAM, Costa JGM da. Nutritional Value, Ethnopharmacology, Chemistry, and Biological Activities of Species of the Genus Cnidoscolus: An Updated Review. Foods. 2025;14(12):2092. DOI: https://doi.org/10.3390/foods14122092
Kuti JO, Konuru HB. Antioxidant capacity and phenolic content in leaf extracts of tree spinach (Cnidoscolus spp.). J Agric Food Chem. 2004;52(1):117-121. DOI: https://doi.org/10.1021/jf030246y
Dirir AM, Daou M, Yousef AF, Yousef LF. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem Rev. 2022;21(4):1049-1079. DOI: https://doi.org/10.1007/s11101-021-09773-1
Sipahutar H, Gaol AYDL, Prasetya E. Antidiabetic Potentials of Ethanol Extract of Timonius flavescens (Jacq.) Baker Leaf. Trop J Nat Prod Res. 2023;7(1). DOI: https://doi.org/10.26538/tjnpr/v7i1.5
Mons E, Roet S, Kim RQ, Mulder MPC. A comprehensive guide for assessing covalent inhibition in enzymatic assays illustrated with kinetic simulations. Curr Protoc. 2022;2(6):e419. DOI: https://doi.org/10.1002/cpz1.419
Qasim N, Arif A, Mahmood R. Hyperglycemia enhances the generation of ROS and RNS that impair antioxidant power and cause oxidative damage in human erythrocytes. Biochem Cell Biol. 2022;101(1):64-76. DOI: https://doi.org/10.1139/bcb-2022-0008
Gandhi GR, Ignacimuthu S, Paulraj MG, Sasikumar P. Antihyperglycemic activity and antidiabetic effect of methyl caffeate isolated from Solanum torvum Swartz. fruit in streptozotocin induced diabetic rats. Eur J Pharmacol. 2011;670(2-3):623-631. DOI: https://doi.org/10.1016/j.ejphar.2011.09.159
Bailly F, Toillon RA, Tomavo O, Jouy N, Hondermarck H, Cotelle P. Antiproliferative and apoptotic effects of the oxidative dimerization product of methyl caffeate on human breast cancer cells. Bioorg Med Chem Lett. 2013;23(2):574-578. DOI: https://doi.org/10.1016/j.bmcl.2012.11.009
Pyrzynska K. Ferulic acid—a brief review of its extraction, bioavailability and biological activity. Separations. 2024;11(7):204. DOI: https://doi.org/10.3390/separations11070204
Kaur J, Kaur R. p-Coumaric acid: A naturally occurring chemical with potential therapeutic applications. Curr Org Chem. 2022;26(14):1333-1349. DOI: https://doi.org/10.2174/1385272826666221012145959
Wu J, Fu YS, Lin K. A narrative review: The pharmaceutical evolution of phenolic syringaldehyde. Biomed Pharmacother. 2022;153:113339. DOI: https://doi.org/10.1016/j.biopha.2022.113339
Tanaka Y, Kuwana M, Fujii T,. 2019 Diagnostic criteria for mixed connective tissue disease (MCTD): From the Japan research committee of the ministry of health, labor, and welfare for systemic autoimmune diseases. Mod Rheumatol. 2021;31(1):29-33. DOI: https://doi.org/10.1080/14397595.2019.1709944
Chen KY, Chen YJ, Cheng CJ, Jhan KY, Chiu CH, Wang LC. 3-Hydroxybenzaldehyde and 4-Hydroxybenzaldehyde enhance survival of mouse astrocytes treated with Angiostrongylus cantonensis young adults excretory/secretory products. Biomed J. 2020;44(6 Suppl 2):S258. DOI: https://doi.org/10.1016/j.bj.2020.11.008
Uaraksakul P, Chanprapai P. In vitro antifungal activity of Boesenbergia rotundo Linn. and Syzygium aromaticum L. Merr. and Perry extracts against Aspergillus flavus. In: Medical Sciences Forum. Vol 12. MDPI; 2022:8. DOI: https://doi.org/10.3390/eca2022-12687
Uaraksakul P, Silawong K, Sornkaew N. Comparison of the efficacy of Rhizome extracts of some family Zingiberaceae plants for antifungal Rhizoctonia solani Kuhn. J BSRU-Research Dev Inst. 2014;9(2):52-61.
Phong HX, Viet NT, Quyen NTN, Van Thinh P, Trung NM, Ngan TTK. Phytochemical screening, total phenolic, flavonoid contents, and antioxidant activities of four spices commonly used in Vietnamese traditional medicine. Mater Today Proc. 2022;56:A1-A5. DOI: https://doi.org/10.1016/j.matpr.2021.12.142


