Methanol Extract of Chrysophylum albidum Fruit Attenuates Dextran Sulfate Sodium-Induced Ulcerative Colitis
Main Article Content
Abstract
Ulcerative colitis (UC) is a chronic bowel illness that causes inflammation by eroding the colon and rectum lining. The prevalence of inflammatory bowel disease (IBD) is on the rise worldwide. The available treatments have been reported to cause adverse effects such as nasopharyngitis, hypokalemia, and leukopenia. Hence, in the quest to manage ulcerative colitis, there is a need to investigate potential therapeutic bioactives in natural products such as Chrysophylum albidum fruit which have been reported to have anti-inflammatory properties. The aim of this study, therefore, was to evaluate the effects of Chrysophylum albidum fruit methanol extract (CAFÉ) on inflammation in the Dextran sulfate sodium (DSS) induced model of colitis in male Wistar rats. Twenty-five male Wistar rats were randomly divided into 5 groups of 5 animals each: Control (I); DSS-induced colitis (II); DSS-induced colitis + 200mg/kg of CAFÉ (III); DSS-induced colitis + 400mg/kg of CAFÉ (IV) and DSS induced colitis + 200mg/kg of Sulfasalazine (V). Colitis was induced by administering 3% (v/v) DSS for seven days. CAFE administration at 200 mg/kg and 400 mg/kg reduced the infiltration of inflammatory cells and alterations in the structure of colonic crypts. The extract significantly (p<0.05) attenuated the increased MDA, nitrite, TNF-α, and IL-6 levels. Activities of SOD, CAT, MPO, and GSH were also significantly (p<0.05) increased. Immunohistochemistry revealed increased colonic MUC-2 expression by CAFÉ following DSS-induced colitis. In conclusion, CAFÉ attenuated DSS-induced colitis via antioxidant and anti-inflammatory mechanisms and through the stimulation of MUC 2 expression in the colon.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Podolsky D. The current future understanding of inflammatory bowel disease. Best Pr Res Clin Gastroenterol. 2002; 16:933–943. DOI: https://doi.org/10.1053/bega.2002.0354
2. Karlsson L, Rehnström E, Karlsson A, Utkovic H, Jansson L, Michaëlsson E. Validation of murine dextran sulfate sodium-induced colitis using four therapeutic agents for human inflammatory bowel disease. Int Immunopharmacol. 2008; 8: 836-844.
3. Boltin D, Perets TT, Vilkin A, Niv Y. Mucin function in inflammatory bowel disease: an update. J. Clin. Gastroenterol. 2013; 47, 106–111. DOI: https://doi.org/10.1097/MCG.0b013e3182688e73
4. Edem DO, Eka OU, Ifon ET. Chemical evaluation of nutritive value of the fruit of African starapple (Chrysophyllum albidum), Food Chem. 1984; 14 (4) 303–311. DOI: https://doi.org/10.1016/0308-8146(84)90085-2
5. Hao Cheng, Hao Li, Zhong Li, Yun Wang, Liangguo Liu, Jing Wang, Xiaokang Ma, Bie Tan. The role of glycosylated mucins in maintaining intestinal homeostasis and gut health, Anim Nutr. 2025; 21: 439-446. DOI: https://doi.org/10.1016/j.aninu.2025.03.004
6. Kang Y, Park H, Choe BH, Kang B. The Role and Function of Mucins and Its Relationship to Inflammatory Bowel Disease. Front Med (Lausanne). 2022; 848344. doi: 10.3389/fmed.2022.848344. DOI: https://doi.org/10.3389/fmed.2022.848344
7. Nicole AB, Katharina R, Caroline EW. The role of mucosal barriers in disease progression and transmission. Adv. Drug Deliv. Rev. Volume 200.2023.115008. ISSN 0169-409X. https://doi.org/10.1016/j.addr.2023.115008. DOI: https://doi.org/10.1016/j.addr.2023.115008
8. Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC-2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl. Acad. Sci. U.S.A.108(Suppl 1). 2011; 4659–4665. DOI: https://doi.org/10.1073/pnas.1006451107
9. Corfeld AP. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochimica et Biophysica Acta. 2015; 1850, 236–252. DOI: https://doi.org/10.1016/j.bbagen.2014.05.003
10. World Health Organization https://www.who.int/health-topics/ traditional-complementary-and-integrative-medicine#tab=tab_1. Accessed 13 Dec 2021.
11. Huang TC, Tsai SS, Liu LF, Liu YL, Liu HJ, Chuang KP. Effect of Arctium lappa L. in the dextran sulfate sodium colitis mouse model. World J Gastroenterol. 2010; 16:4193–4199. DOI: https://doi.org/10.3748/wjg.v16.i33.4193
12. Morten Georg Jensen, Michael Goode, Michael Heinrich. Herbal medicines and botanicals for managing insomnia, stress, anxiety, and depression: A critical review of the emerging evidence focusing on the Middle East and Africa. Pharma Nutr. 2024; 29: 100399.ISSN.2213-4344. https://doi.org/10.1016/j.phanu.2024.100399. DOI: https://doi.org/10.1016/j.phanu.2024.100399
13. Choi W, Choi CH, Kim YR, Kim S.J, Na CS, Lee H. Her Ding: herb recommendation system to treat diseases using genes and chemicals.2016; 4(6), 223-226 DOI: https://doi.org/10.1093/database/baw011
14. Melgar S, Karlsson L, Rehnström E, Karlsson A, Utkovic H, Jansson L, Michaëlsson E. Validation of murine dextran sulfate sodium-induced colitis using four therapeutic agents for human inflammatory bowel disease. Int Immunopharmacol. 2008; 8: 836-844.
15. Ajayi AM, Badaki VB, Ariyo OO, Ben-Azu B, Asejeje FO, Adedapo AD. Chrysophyllum albidum fruit peel attenuates nociceptive pain and inflammatory response in rodents by inhibition of pro-inflammatory cytokines and COX-2 expression through suppression of NF-κB activation, Nutr. Res.2020; 77: 73–84. DOI: https://doi.org/10.1016/j.nutres.2020.03.004
16. Asagba SO, Kadiri HE, Ezedom T. Biochemical changes in diabetic rats treated with ethanolic extract of Chysophyllum albidum fruit-skin, J. Basic Appl. Zool.2019; 80 (1) 42. DOI: https://doi.org/10.1186/s41936-019-0118-y
17. Imaga, NA, Iheagwam FN, Urua, EE, Evarista A. Nutritional, Phytochemical, and Biological Activities of Chrysophyllum albidum Fruit Extracts from Lagos, Sci. World J., 2023, 8701848, 11 pages, 2023. https://doi.org/10.1155/2023/8701848 DOI: https://doi.org/10.1155/2023/8701848
18. Oyetayo FL, Akomolafe SF, Odeniyi IA. Effects of dietary supplementation of Chrysophyllum albidum fruit pulp powder on some biochemical parameters in a type 2 diabetes rat model, Vegetos. 2019; 32 (2) 190–199. DOI: https://doi.org/10.1007/s42535-019-00022-7
19. Ajayi AM, Diya OO, Adedapo ADA. Hypolipidemic effect of Chrysophyllum albidum peel extract and its underlying antioxidant mechanisms in normal and Triton-X-100-induced hyperlipidemic rats, J. Diet. Suppl. 2020; 17 (4) 365–383. DOI: https://doi.org/10.1080/19390211.2019.1591563
20. Bobadoye MF, Bamisi OO, Enujiugha VN. Hypolipidemic and antioxidative effects of African star apple juice (Chrysophylum albidum) on rats fed on diets high in cholesterol and oil, Food Nutr. Sci. 2016; 7 (10) 825–843. DOI: https://doi.org/10.4236/fns.2016.710083
21. Adekanmi, DG, Olowofoyeku AE. African star apple: Potentials and application of some indigenous species in Nigeria. J. Appl. Sci. Environ. Manage. 2020; 24(8): 1307-1314. DOI: https://doi.org/10.4314/jasem.v24i8.1
22. Adepoju OT, Adeniji OP. Nutrient composition and micronutrient potential of three wildly grown varieties of African star apple (Chrysophyllum albidum) from Nigeria, Afr. J. Food Sci. 2012; 6 (12) 344–351. DOI: https://doi.org/10.5897/AJFS12.045
23. Ihekwereme CP, Melidem CO, Maduka IC, Okoye JN. In vivo antiplasmodial and toxicological effects of extracts of fruit pulp ofChrysophyllum albidum G. Don (Sapotaceae), Trop. J. Nat. Prod. Res. 2018; 2 (3) 126–131. DOI: https://doi.org/10.26538/tjnpr/v2i3.5
24. Ihekwereme CP, Okoye FK, Agu SC, Oli AN. Traditional consumption of the fruit pulp of Chrysophyllum albidum (Sapotaceae) in pregnancy may be serving as an intermittent preventive therapy against malaria infection, Anc. Sci. Life. 2017; 36 (4) 191–195. DOI: https://doi.org/10.4103/asl.ASL_208_16
25. Akinmoladun, AC, Falaiye OE, Ojo OB, Adeoti A, Amoo ZA, Olaleye MT. Effect of extraction technique, solvent polarity and plant matrix on the antioxidant properties of Chrysophyllum albidum G. Don (African Star Apple). Bull. Natl. Res. Cent..2022; 46: 40. DOI: https://doi.org/10.1186/s42269-022-00718-y
26. Izuakor PN, Ejidike LC, Muobike CM. Extraction, Physicochemical, Fatty Acid Analysis of Chrysophyllum Albidum (African Star Apple) Seed Oil and Nutrient Composition of the Fruit Parts. Int. J. Res. Sci. Innov. (IJRSI) 2024; 9(5), pages 156- 171. DOI: https://doi.org/10.51584/IJRIAS.2024.905014
27. Sulaiman KW, Ajao FD, Adetuberu IA. African star apple (Chrysophyllum albidum) as a source of probiotics: analyzing physiochemical attributes and evaluation. Top Multidisciplinary Res. J 2023;7(4):1-6. https://topjournals.org/index.php/TMRJ/article/view/154
28. Liaudanskas M, Noreikienė I, Zymonė K, Juodytė R, Žvikas V, Janulis V. Composition and Antioxidant Activity of Phenolic Compounds in Fruit of the Genus Rosa L. Antioxidants (Basel). 2021 Apr 1;10(4):545. doi: 10.3390/antiox10040545. DOI: https://doi.org/10.3390/antiox10040545
29. Park J, Cheon JH. Updates on conventional therapies for inflammatory bowel diseases: 5-aminosalicylates, corticosteroids, immunomodulators, and anti-TNF-α. Korean J Intern Med. 2022; (5):895-905. doi: 10.3904/kjim.2022.132. DOI: https://doi.org/10.3904/kjim.2022.132
30. Mikami Y, Tsunoda J, Suzuki S, Mizushima I, Kiyohara H, Kanai T. Significance of 5-Aminosalicylic Acid Intolerance in the Clinical Management of Ulcerative Colitis. Digestion. 2023;104(1):58-65. doi: 10.1159/000527452. DOI: https://doi.org/10.1159/000527452
31. Guo Y, Lu N, Bai A. Clinical use and mechanisms of infliximab treatment on inflammatory bowel disease: A recent update. Biomed. Res. Int.; 2013:581631. DOI: https://doi.org/10.1155/2013/581631
32. Lee SH, Kim HR, Noh EM, Park JY, Kwak MS, Jung YJ, Yang HJ, Ryu MS, Seo HY, Jang H, Kim SY Park MH. AntiInflammatory Effect and Signaling Mechanism of Glycine max Hydrolyzed with Enzymes from Bacillus velezensis KMU01 in a Dextran-Sulfate-Sodium-Induced Colitis Mouse Model.
Nutrients 2023; 13: 3029. https://doi.org/10.3390/nu15133029 DOI: https://doi.org/10.3390/nu15133029
33. Saxena A, Mitchell C, Bogdon R, Roark K, Wilson K, Staley S, Hailey M, Williams MC, Rutkovsky A, Nagarkatti P, Nagarkatti M, Busbee PB. Aryl Hydrocarbon Receptor Regulates Muc2 Production Independently of IL-22 during Colitis. Int J Mol Sci. 2024 ;25(4):2404. doi: 0.3390/ijms25042404. DOI: https://doi.org/10.3390/ijms25042404
34. Cooper HS, Murthy SN, Shah RS, Sedergan DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest [Internet]. 1993; 69:238–250. 10.1016/s0021-5198(19)41298-5.
35. Jollow D, Mitchell J, Zampaghone N, Gillette JR. Bromobenzene induced liver necrosis, protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974; 11:151–169. DOI: https://doi.org/10.1159/000136485
36. Goth LA. simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta. 1991; 196:143–151. DOI: https://doi.org/10.1016/0009-8981(91)90067-M
37. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972; 247:3170–3175. DOI: https://doi.org/10.1016/S0021-9258(19)45228-9
38. Habig WH, Pabst MJ, Jakoby WB. Glutathione S transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974; 249:7130–7139. DOI: https://doi.org/10.1016/S0021-9258(19)42083-8
39. Nagababu E, Rifkind JM, Boindala S, Nakka L. Assessment of antioxidant activity of eugenol in vitro and in vivo. Free Radicals Antioxid Protoc. 2010;165–180. DOI: https://doi.org/10.1007/978-1-60327-029-8_10
40. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannerbaum SR, Analysis of nitrate, nitrite, and [15 N] nitrate in biological fluids. Anal Biochem.1982; 126:131–138. DOI: https://doi.org/10.1016/0003-2697(82)90118-X
41. Granell MS, Gironella O, Bulbena O. Panes J, Mauri M, Sabater L, Aparisi L, Gelpi E, Closa D. Heparin mobilizes xanthine oxidase and induces lung inflammation in acute pancreatitis. Crit Care Med. 2003; 31:525–530. DOI: https://doi.org/10.1097/01.CCM.0000049948.64660.06
42. Erukainure O, Ijomone O, Sanni O Type 2 diabetes induced oxidative brain injury involves altered cerebellar neuronal integrity and elemental distribution, and exacerbated Nrf2 expression: therapeutic potential of raffia palm (Raphia hookeri) wine. Metab Brain Dis. 2019; 34:1385–1399. DOI: https://doi.org/10.1007/s11011-019-00444-x
43. Ijomone O, Olatunji S, Owolabi J. Nickel-induced neurodegeneration in the hippocampus, striatum and cortex; an ultrastructural insight, and the role of caspase-3 and α-synuclein. J Trace Elem Med Biol. 2018;50: 16–23. DOI: https://doi.org/10.1016/j.jtemb.2018.05.017
44. Tuominen V, Ruotoistenmäki S, Viitanen A, Jumppanem M. Isola J. ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res. 2010;12: R56. DOI: https://doi.org/10.1186/bcr2615
45. Melgar S, Karlsson L, Rehnström E, Karlsson A, Utkovic H, Jansson L, Michaëlsson E. Validation of murine dextran sulfate sodium-induced colitis using four therapeutic agents for human inflammatory bowel disease. Int Immunopharmacol. 2008; 8: 836-844.
46. Soliman MG, Mansour HA, Hassan WA, Shawky E. Protective effects of amoxicillin and probiotics on colon disorders in an experimental model of acute diverticulitis disease. Inflammopharmacology [Internet]. 2022; 30:2153–2165. Available from: https://doi.org/10.1007/s10787-022-01093-w. DOI: https://doi.org/10.1007/s10787-022-01093-w
47. Ajayi BO, Adedara IA, Emeka OC, Awoyinka PB, Beckley OO, Adeleye AA, Farombi EO. Kolaviron ameliorates chronic colitis induced by prolonged oral administration of Dextran Sulphate Sodium in Balb/c mice. Eur. J. Med. Chem. Rep.. 2022; 100071 DOI: https://doi.org/10.1016/j.ejmcr.2022.100071
48. Wadie W, Abdel-Aziz H, Zaki H, et al. STW 5 is effective in dextran sulfate sodium-induced colitis in rats. Int J Color Dis. 2012; 27:1445–1453. DOI: https://doi.org/10.1007/s00384-012-1473-z
49. Elmaksoud HAA, Motawea MH, Desoky AA, Ibrahimi EA. Hydroxytyrosol alleviate intestinal inflammation, oxidative stress and apoptosis resulted in ulcerative colitis. Biomed Pharmacother. 2021;142:112073.
50. Muro P, Zhang L, Li S, Zhao Z, Jin T, Mao F, Mao Z. The emerging role of oxidative stress in inflammatory bowel disease. Front Endocrinol (Lausanne). 2024 Jul 15;15:1390351. doi: 10.3389/fendo.2024.1390351. DOI: https://doi.org/10.3389/fendo.2024.1390351
51. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. doi: 10.1155/2014/360438. DOI: https://doi.org/10.1155/2014/360438
52. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017 Dec 14;9(6):7204-7218. doi: 10.18632/oncotarget.23208. DOI: https://doi.org/10.18632/oncotarget.23208
53. Motawea MH, Desoky AA, Ibrahimi EA. Hydroxytyrosol alleviate intestinal inflammation, oxidative stress and apoptosis resulted in ulcerative colitis. Biomed Pharmacother. 2021;142:112073 DOI: https://doi.org/10.1016/j.biopha.2021.112073
54. Su L, Ma FF, An ZY, Ji XY, Zhang P. Yue QL, Zhao C, Sun X, Li KL, Li B Liu X, Zhao L The Metabolites of Lactobacillus fermentum F-B9-1 Relieved Dextran Sulfate Sodium-Induced Experimental Ulcerative Colitis in Mice. Front. Microbiol. 2022; 13, 865925. DOI: https://doi.org/10.3389/fmicb.2022.865925
55. Sinkar S, Kombe S, Malik N, Dhuldhaj U, Pandya U. Myricetin and its derivatives; potential therapeutic effect on human health: a review. Arab. J. Med. Aromat. Plants. 2023; 9(2), 167-209.
56. DeRoche T, Xiao S, Liu X. Histological evaluation in ulcerative colitis. Gastroenterol Rep. 2014;2:178–192. DOI: https://doi.org/10.1093/gastro/gou031
57. Tawiah A, Cornick S, Moreau F, Gorman H, Kumar M, Tiwari S, Chadee K. High MUC2 Mucin Expression and Misfolding Induce Cellular Stress, Reactive Oxygen Production, and Apoptosis in Goblet Cells. Am J Pathol. 2018;188:1354–1373. DOI: https://doi.org/10.1016/j.ajpath.2018.02.007
58. Kang S, Gweon T, Lee H, Lee KM, Jung SH, Kang SB. Reliability and Validity of Korean Version of Crohn’s and Ulcerative Colitis Questionnaire-8. Biomed Res Int. 2022; 9746899-9746899. DOI: https://doi.org/10.1155/2022/9746899
59. Karlsson L, Rehnström E, Karlsson A, Utkovic H, Jansson L and Michaëlsson E.Validation of murine dextran sulfate sodium-induced colitis using four therapeutic agents for human inflammatory bowel disease. Int Immunopharmacol. 2008; 8: 836-844. DOI: https://doi.org/10.1016/j.intimp.2008.01.036
60. Escande, F, Porchet, N, Aubert JP. Batra SK. Structural organization and classification of the human mucin genes. Front. Biosci. 2001; 6, D1192–1206. DOI: https://doi.org/10.2741/A579
61. Colombel JF, Aboubakr A, Narula N. Systematic review: Safety of mesalazine in ulcerative colitis. Aliment. Pharmacol. Ther. 2018; 47:1597–1609. doi: 10.1111/apt.14688. DOI: https://doi.org/10.1111/apt.14688


