In Vitro Antidiabetic, Anti-Inflammatory, Antioxidant, and Anticoagulatory Effects of Costus afer Ker Gawl. Leaf Fractions

Main Article Content

Olajide O. Laide
Kayode A. A. Abolanle
Anyasor N. God’swill 

Abstract

Diabetes mellitus especially type 2 is associated with pro-coagulatory, and oxidative stress states resulting in high levels of pro-inflammatory cytokines. Hyperglycemia increases blood viscosity which triggers coagulation leading to vascular dysfunction. This study explored the in vitro antidiabetic, anti-inflammatory, anticoagulation, and antioxidant effects of Costus afer Ker Gawl. leaf extract and fractions. Crude ethanol extract of C. afer leaves were partitioned using solvent-partitioning technique to obtain hexane, ethyl acetate, butanol, and aqueous   fractions respectively, in the order of increasing polarity. The fractions were subjected to in vitro assessments for antidiabetic (alpha-amylase and alpha-glucosidase inhibition), anti-inflammatory (erythrocyte stabilization and protein denaturation inhibition), and antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH), lipid peroxidation, reducing power activity and NO inhibition) assays. Clotting profiles on blood sample collected from non-diabetic and diabetic human volunteers were also assayed (clotting time, prothrombin time, and activated partial thromboplastin time). A statistical analysis was done using ANOVA which is then followed by Tukey’s post-hoc test for comparison and Microsoft Excel 2016 for graphs. C. afer leaf fractions showed a significant increase in antidiabetic, anti-inflammatory, and antioxidant activities, and significant prolongation in clotting profiles of healthy and diabetic human volunteers. This study demonstrated that C. afer leaf fractions possess antidiabetic, anti-inflammatory, antioxidant, and anticoagulation activities. It is therefore recommended that further research could be done to explore the in vivo effects and the bioactive compounds responsible could be identified and isolated for therapeutic purposes.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

In Vitro Antidiabetic, Anti-Inflammatory, Antioxidant, and Anticoagulatory Effects of Costus afer Ker Gawl. Leaf Fractions . (2025). Tropical Journal of Natural Product Research , 9(8), 4023 – 4032. https://doi.org/10.26538/tjnpr/v9i8.67

References

1. Eguchi N, Vaziri ND, Dafoe DC, Ichii H. The Role of Oxidative Stress in Pancreatic β Cell Dysfunction in Diabetes. Int. J. Mol. Sci. 2021; 22(4):1509. DOI: https://doi.org/10.3390/ijms22041509

2. Domingueti CP, Dusse LMS, Carvalho M das G, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J. Diabetes Complicat. 2016; 30(4):738–745. DOI: https://doi.org/10.1016/j.jdiacomp.2015.12.018

3. Boison D, Adinortey CA, Babanyinah GK, Quasie O, Agbeko R, Wiabo-Asabil GK, Adinortey MB. Costus afer: A Systematic Review of Evidence-Based Data in support of its Medicinal Relevance. Scientifica. 2019; 2019:3732687. doi: 10.1155/2019/3732687. PMID: 32082693; PMCID: PMC7011497. DOI: https://doi.org/10.1155/2019/3732687

4. Ogugofor MO, Njoku UO, Njoku OU, Batiha GES. Phytochemical analysis and thrombolytic profiling of Costus afer stem fractions. Futur. J. Pharm. Sci. 2022; 8(1). DOI: https://doi.org/10.1186/s43094-021-00392-3

5. Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, Calina D and Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front. Chem. 2023; 11:1158198. doi: 10.3389/fchem.2023.1158198

6. Muscolo A, Mariateresa O, Torello Giulio, Russo Mariateresa. Oxidative Stress: The Role of Antioxidant Phytochemicals in the Prevention and Treatment of Diseases. Int. J. Mol. Sci. 2024; 25(6):3264. DOI: https://doi.org/10.3390/ijms25063264

7. Dubsky M, Veleba J, Sojakova D, Marhefkova N, Fejfarova V, Jude EB. Endothelial Dysfunction in Diabetes Mellitus: New Insights. Int. J. Mol Sci. 2023; 24(13):10705. https://www.mdpi.com/1422-0067/24/13/10705 DOI: https://doi.org/10.3390/ijms241310705

8. Li X, Weber NC, Cohn DM, Hollmann MW, DeVries JH, Hermanides J, Preckel B. Effects of Hyperglycemia and Diabetes Mellitus on Coagulation and Hemostasis. J. Clin. Med. 2021; 10(11):2419. doi: 10.3390/jcm10112419. PMID: 34072487; PMCID: PMC8199251. DOI: https://doi.org/10.3390/jcm10112419

9. Olajide LO, Liasu TA, Shabi DR, Adeoye BO, Olajide OS, Orodele KA, Ogunbiyi BT. Anti-Inflammatory Property of Costus afer Ker Gawl Ethanol Leaf Extract in STZ-Induced Diabetic Rats. 2023; Sch. Int. J. Biochem, 6(10): 129-137. DOI: https://doi.org/10.36348/sijb.2023.v06i10.002

10. Scridon A. Platelets and Their Role in Hemostasis and Thrombosis—From Physiology to Pathophysiology and Therapeutic Implications. Int. J. Mol. Sci. 2022; 23(21):12772. https://mdpi-res.com/d_attachment/ijms/ijms-23-12772/article_deploy/ijms-23-12772.pdf?version=1666520564 DOI: https://doi.org/10.3390/ijms232112772

11. Sabitha V, Panneerselvam K, Ramachandran S. In vitro α–glucosidase and α–amylase enzyme inhibitory effects in aqueous extracts of Abelmoscus esculentus (L.) Moench. Asian Pac. J. Trop. Biomed. 2012; 2(1): S162–164. DOI: https://doi.org/10.1016/S2221-1691(12)60150-6

12. Pant G, Sai K, Babasaheb S, Reddy R, G S. In vitro α-amylase and α-glucosidase Inhibitor Activity of Abutilon indicum Leaves. Asian J. Pharm. Clin. Res. 2013; 6(9):22-24.

13. Vennila, V., & Pavithra, V. In-vitro alpha Amylase and alpha Glucosidase Inhibitory Activity of Various Solvent Extracts of Hybanthus Enneaspermus Linn. 2015.

14. Sakat, S, Juvekar, A, & Gambhire, M. In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. Int. J. Pharm. Pharm. Sci. 2010; 2(1), 146–156.

15. McCune LM, Johns T. Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the Indigenous Peoples of the North American boreal forest. J. Ethnopharmacol. 2002; 82(2-3):197–205. DOI: https://doi.org/10.1016/S0378-8741(02)00180-0

16. Anyasor G, Onajobi F, Osilesi O, Adebawo O. Proximate composition, mineral content and in vitro antioxidant activity of leaf and stem of Costus afer (Ginger lily). J. Intercult. Ethnopharmacol. 2014;3(3):128. DOI: https://doi.org/10.5455/jice.20140527085848

17. Hue SM, Boyce A, Somasundram C. Antioxidant activity, phenolic and flavonoid contents in the leaves of different varieties of sweet potato (Ipomoea batatas). Aust. J. Crop Sci. 2012; 6(3):375–380.

18. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 1982; 126(1):131–138. Available from: https://www.sciencedirect.com/science/article/pii/000326978 290118X DOI: https://doi.org/10.1016/0003-2697(82)90118-X

19. Wintrobe, M. W. (1967). Clinical Haematology. 6th edition

Philadelphia, Lea and Febiger, 365-367.

20. Brown, B. A. Haematology: Principles and Procedures, 5th Ed., Lea and Febiger, Philadelphia, (1988) 195-215.

21. Osoniyi O, Onajobi F. Coagulant and anticoagulant activities in Jatropha curcas latex. J. Ethnopharmacol. 2003; 89(1):101–105. DOI: https://doi.org/10.1016/S0378-8741(03)00263-0

22. Kashtoh H, Baek KH. Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes. Plants (Basel, Switzerland). 2022; 11(20):2722. Available from: https://pubmed.ncbi.nlm.nih.gov/36297746/ DOI: https://doi.org/10.3390/plants11202722

23. Akmal M, Wadhwa R. Alpha Glucosidase Inhibitors. PubMed. Treasure Island (FL): StatPearls Publishing. 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557848/

24. Li X, Bai Y, Jin Z, Svensson B. Food-derived non-phenolic α-amylase and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes. LWT. 2022;153:112455. DOI: https://doi.org/10.1016/j.lwt.2021.112455

25. Imieje VO, Onochie CF, Nwaka B, Falodun A. In vitro Antioxidant and Antidiabetic Potentials of Various Extracts of the Stem Bark of Cylicodiscus gabunensis (Harms) Mimosaceae, Nigeria. Trop. J. Nat. Prod. Res. 2022; 6(11):1858-1863. http://www.doi.org/10.26538/tjnpr/v6i11.19

26. Rahman MM, Dhar PS, Sumaia, Anika F, Ahmed L, Islam MR, Sultana NA, Cavalu S, Pop O, Rauf A. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomed Pharmacother. 2022; 152:113217. doi:10.1016/j.biopha.2022.113217 DOI: https://doi.org/10.1016/j.biopha.2022.113217

27. Aidoo DB, Konja D, Henneh IT, Ekor M. Protective Effect of Bergapten against Human Erythrocyte Hemolysis and Protein Denaturation In Vitro. Int. J. Inflam. 2021;2021:1279359. doi:10.1155/2021/1279359 DOI: https://doi.org/10.1155/2021/1279359

28. Tay YN, Bakar MHA, Azmi MN, Saad NA, Awang K, Litaudon M, Kassim MA. Inhibition of Carbohydrate Hydrolysing Enzymes, Antioxidant Activity and Polyphenolic Content of Beilschmiedia Species Extracts. IOP Conf. Ser. Mater. Sci. 2020; 716(1):012007–012007. DOI: https://doi.org/10.1088/1757-899X/716/1/012007

29. Brown A, Anderson D, Racicot K, Pilkenton SJ, Apostolidis E. Evaluation of Phenolic Phytochemical Enriched Commercial Plant Extracts on the In Vitro Inhibition of α-Glucosidase. Front. Nutr. 2017;4. DOI: https://doi.org/10.3389/fnut.2017.00056

30. Amarowicz R, Pegg RB. Natural antioxidants of plant origin. Adv. Food Nutr. Res. 2019;1–81. https://www.sciencedirect.com/ science/article/pii/S1043452619300269 DOI: https://doi.org/10.1016/bs.afnr.2019.02.011

31.Chirumamilla P, Taduri S. Assessment of in vitro anti-inflammatory, antioxidant and antidiabetic activities of Solanum khasianum Clarke. Vegetos. 2022; https://doi.org/10.1007/s42535-022-00410-6 DOI: https://doi.org/10.1007/s42535-022-00410-6

32. Francenia Santos-Sánchez N, Salas-Coronado R, Villanueva-Cañongo C, Hernández-Carlos B. Antioxidant Compounds and Their Antioxidant Mechanism. Antioxidants. Intech Open. 2019; Available from: http://dx.doi.org/10.5772/intechopen.85270 DOI: https://doi.org/10.5772/intechopen.85270

33. Wu D, Saleem M, He T, He G. The Mechanism of Metal Homeostasis in Plants: A New View on the Synergistic Regulation Pathway of Membrane Proteins, Lipids and Metal Ions. Membranes. 2021; 11(12):984. https://doi.org/10.3390/membranes11120984 DOI: https://doi.org/10.3390/membranes11120984

34. Dharmadeva S, Galgamuwa LS, Prasadinie C, Kumarasinghe N. In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. Ayu. 2018; 39, 239 - 242. DOI: https://doi.org/10.4103/ayu.AYU_27_18

35. Dash UC, Nitish Kumar Bhol, Swain SK, Rashmi Rekha Samal, Nayak PK, Raina V, Panda SK, Kerry RG, Duttaray AK, Jena AB. Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharm. Sin B. 2024; 15(1):15–34. https://www.sciencedirect. com/science/article/pii/S2211383524004040 DOI: https://doi.org/10.1016/j.apsb.2024.10.004

36. Kumar A P N, Kumar M, Jose A, Tomer V, Oz E, Proestos C, Zeng M, Elobeid TKS, Oz F. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules. 2023; 28(2), 887. https://doi.org/10.3390/molecules28020887 DOI: https://doi.org/10.3390/molecules28020887

37. Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019 Dec 1;24(e00370):e00370. DOI: https://doi.org/10.1016/j.btre.2019.e00370

38. Shabalala SC, Johnson R, Basson AK, Ziqubu K, Hlengwa N, Mthembu SXH, Mabhida SE, Mazibuko-Mbeje SE, Hanser S, Cirilli I, Tiano L, Dludla P V. Detrimental Effects of Lipid Peroxidation in Type 2 Diabetes: Exploring the Neutralizing Influence of Antioxidants. Antioxidants. 2022; 11(10), 2071. https://doi.org/10.3390/antiox11102071

39. Chaudhary P, Pracheta Janmeda, Anca Oana Docea, Balakyz Yeskaliyeva, Faizal A, Babagana Modu, Calina D, Sharifi-Rad J. Oxidative stress, Free Radicals and antioxidants: Potential Crosstalk in the Pathophysiology of Human Diseases. Front. Chem. 2023; 11. https://www.frontiersin.org/journals/chemistry/articles/10.3389/fchem.2023.1158198/full DOI: https://doi.org/10.3389/fchem.2023.1158198

40. Vaou N, Stavropoulou E, Voidarou C (Chrysa), Tsakris Z, Rozos G, Tsigalou C, Bezirtzoglou E. Interactions between Medical Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. Antibiotics. 2022;11(8):1014. https://doi.org/10.3390/antibiotics11081014 DOI: https://doi.org/10.3390/antibiotics11081014

41. Rudrapal M, Khairnar SJ, Khan J, Dukhyil AB, Ansari MA, Alomary MN, Alshabrmi FM, Palai S, Deb PK. Devi R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022; 13(1). https://doi.org/10.3389/fphar.2022.806470 DOI: https://doi.org/10.3389/fphar.2022.806470

42. Atere TG, Akinloye OA, Ugbaja RN, Ojo DA, Dealtry G. In vitro antioxidant capacity and free radical scavenging evaluation of standardized extract of Costus afer leaf. Food Sci Hum Well. 2018; 7(4):266–272. https://doi.org/10.1016/j.fshw.2018.09.004 DOI: https://doi.org/10.1016/j.fshw.2018.09.004

43. Zahra M, Abrahamse H, George BP. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants. 2024;13(8):922–922. https://doi.org/10.3390/antiox13080922 DOI: https://doi.org/10.3390/antiox13080922

44. Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. Adv. Sci. (Weinh.). 2023; 10(30):e2303259. https://doi.org/10.1002/advs.202303259 DOI: https://doi.org/10.1002/advs.202303259

45. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Aitavilla D, Bitto A. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017; 2017(8416763):1–13. https://pmc.ncbi.nlm.nih.gov/articles/PMC5551541/ DOI: https://doi.org/10.1155/2017/8416763

46. Hayat J, Akodad M, Moumen A, Baghour M, Skalli A, Ezrari S, Belmalha S. Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from 2 different localities of Northeast of Morocco. Heliyon. 2020; 6(11):e05609. https://doi.org/10.1016/j.heliyon.2020.e05609 DOI: https://doi.org/10.1016/j.heliyon.2020.e05609

47. Ezejiofor AN, Igweze ZN, Udowelle NA, Orisakwe OE. Histopathological and biochemical assessments of Costus afer stem on alloxan-induced diabetic rats. J. Basic Clin. Physiol. Pharmacol. 2017; 28(4):383–391. https://doi.org/10.1515/jbcpp-2016-0039 DOI: https://doi.org/10.1515/jbcpp-2016-0039

48. Jaradat N, Hawash M, Dass G. Phytochemical analysis, in-vitro anti-proliferative, anti-oxidant, anti-diabetic, and anti-obesity activities of Rumex rothschildianus Aarons. extracts. BMC Complement. Med. Ther. 2021;21(1). DOI: https://doi.org/10.1186/s12906-021-03282-6

49. LaPelusa A, Dave HD. Physiology, hemostasis [Internet]. National Library of Medicine. StatPearls Publishing. 2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545263/

50. Ambelu YA, Shiferaw MB, Abebe M, Enawgaw B. Prothrombin time, activated partial thromboplastin time and platelet counts of type II diabetes mellitus: a comparative study. J. Diabetes Met. Disord. 2018;17(2):117–121. DOI: https://doi.org/10.1007/s40200-018-0347-5

51. Zhu L. Tannic Acid Inhibits Protein Disulfide Isomerase, Platelet Activation and Thrombus Formation. Blood. 2018;132(Supplement 1):2418–2418. DOI: https://doi.org/10.1182/blood-2018-99-114418