Synergistic Cytotoxic and Cell Cycle-Regulating Effects of Garcinia cowa Leaf Extract and Trastuzumab in HER2-Positive Breast Cancer Cells
Main Article Content
Abstract
HER2-positive breast cancer is highly aggressive, with poor prognosis and resistance to standard therapies. Although trastuzumab is the standard therapy, its effectiveness is often limited by resistance and cardiotoxic side effects. Therefore, adjuvant therapy strategies are needed to improve the response to trastuzumab. This study evaluated the synergistic effect of Garcinia cowa leaf extract and trastuzumab on MCF-7/HER2 breast cancer cells. Cells were treated with various concentrations of G. cowa leaf extract and trastuzumab, either singly or in combination. Cytotoxicity was assessed using a tetrazolium reduction assay, while synergism was evaluated with the Combination Index (CI). Flow cytometry was employed for cell cycle analysis, apoptosis detection, and the assessment of protein expression (p53, Cyclin D1, and Cyclin E). The results indicated that G. cowa extract had an IC50 of 119.21 µg/mL, whereas trastuzumab had an IC50 of 954.52 µg/mL. The combination of 25 µg/mL extract and 125 µg/mL trastuzumab produced an optimal synergistic effect (Fa = 0.897, CI = 0.266), inducing G2/M arrest with the cell population increasing to 54.6%, reducing cell viability to 73.4%, and elevating the apoptotic fraction by 17.2%. Protein expression analysis revealed an increase in p53 and decreases in Cyclin D1 and Cyclin E, contributing to the inhibition of cell proliferation. Overall, G. cowa leaf extract enhances the effectiveness of trastuzumab through cell cycle modulation and apoptosis induction, suggesting its potential as an adjuvant therapy for HER2-positive breast cancer. Further studies using in vivo models and clinical validation are needed to confirm these findings.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Canc J For Clin. 2021; 71(3):209-249.
2. Sirhan Z, Thyagarajan A, Sahu RP. The efficacy of tucatinib-based therapeutic approaches for HER2-positive breast cancer. Mil Med Res. 2022; 9(1):39-48.
3. Xing F, Gao H, Chen G, Sun L, Sun J, Qiao X, Xue J, Liu C. CMTM6 overexpression confers trastuzumab resistance in HER2-positive breast cancer. Mol Canc. 2023; 22(1):6-24.
4. Merlin JL, Barberi-Heyob M, Bachmann N. In vitro comparative evaluation of trastuzumab (Herceptin®) combined with paclitaxel (Taxol®) or docetaxel (Taxotere®) in HER2-expressing human breast cancer cell lines. Annals of Onco. 2002; 13(11):1743–1748.
5. Tapia M, Hernando C, Martínez MT, Burgués O, Tebar-Sánchez C, Lameirinhas A, Ágreda-Roca A, Torres-Ruiz S, Garrido-Cano I, Lluch A, Bermejo B. Clinical impact of new treatment strategies for HER2-positive metastatic breast cancer patients with resistance to classical anti-HER therapies. Cancers. 2023; 15(18):4522-4539.
6. Kadooh QA, Al-Ziaydi AG, Hamza AJ. Evaluation of the influence of trastuzumab therapy on serum levels of HER-2 protein and breast cancer cell lines. Przeglad Menopauzalny. 2024; 23(2):57–63.
7. Lewinter C, Nielsen TH, Edfors LR, Linde C, Bland JM, LeWinter M, Cleland JG, Køber L, Braunschweig F, Mansson-Broberg A. A systematic review and meta-analysis of beta-blockers and renin–angiotensin system inhibitors for preventing left ventricular dysfunction due to anthracyclines or trastuzumab in patients with breast cancer. Euro Heart J. 2022; 43(27):2562-2569.
8. Ifora I, Hamidi D, Susanti M, Hefni D, Wahyuni FS. Enhancing Chemotherapeutic Efficacy: Synergistic Cytotoxic Effect of Garcinia cowa Bark Extract and Doxorubicin in T47D Breast Cancer Cells. Trop J Nat Prod Res. 2025; 9(1):67–72.
9. Susanti M, Pratama AR, Suryani MI. Development and validation of TLC-densitometry method for quantification of tetraprenyltoluquinone in the stem bark hexane extract of Garcinia cowa Roxb. Heliyon. 2022; 8(9):1-6.
10. Ritthiwigrom T, Laphookhieo S, Pyne SG. Chemical constituents and biological activities of Garcinia cowa Roxb. Maejo Int. J. Sci. Technol. 2013; 7(02):212-231.
11. Wahyuni FS, Shaari K, Stanslas J, Lajis NH, Dachriyanus H. Cytotoxic xanthones from the stem bark of Garcinia cowa Roxb. J Chem Pharm Res. 2015; 7(1):227-236.
12. Husni E, Nahari F, Wirasti Y, Wahyuni FS. Cytotoxicity study of ethanol extract of the stem bark of asam kandis (Garcinia cowa Roxb.) on T47D breast cancer cell line. Asian Pac. J. Trop. Biomed. 2015; 5(3):249-252.
13. Wahyuni FS, Triastuti DH, Arifin H. Cytotoxicity study of ethanol extract of the leaves of asam kandis (Garcinia cowa Roxb.) on T47D breast cancer cell line. Phcog J. 2015; 7(6):369-371.
14. Wahyuni FS, Syafri S, Permatasari D, Hefni D, Hamidi D, Nomiza NA, Rezti IA. Cowanin induces apoptosis in breast cancer cells via Bcl-2 signalling pathway. J Altern Compl Med. 2023; 20(3):631-636.
15. Furqan M, Dachriyanus, Susanti M, Putra PP, Wahyuni FS. Unravelling the interaction between Garcinisidone-a and HER-2 protein in breast cancer: a computational study. Int J App Pharm. 2024; 16(1):99–104.
16. Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, Yu M, Lin J, Cui Q. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int J Mol Sci. 2020; 21(6):1–28.
17. Jassim MM, Rasool KH, Mahmood MM. p53, p21, and cyclin d1 protein expression patterns in patients with breast cancer. Vet World. 2021; 14(10):2833-2838.
18. Andrade-Tomaz M, de Souza I, Ribeiro Reily Rocha C, Rodrigues Gomes L. The role of chaperone-mediated autophagy in cell cycle control and its implications in cancer. Cells. 2020; 9(9):2140-2145.
19. Wahyuni FS, Putri DE, Putra YU, Hamidi D. Cytotoxic activity of Taxus sumatrana (miq.) De laub. Bark, leaves, and shoots on hela, T47D, and MCF-7/HER2 cell lines. Int J App Pharm. 2024; 16(1):93–98.
20. Coecke S, Balls M, Bowe G, Davis J, Gstraunthaler G, Hartung T, Hay R, Merten OW, Price A, Schechtman L, Stacey G. Guidance on good cell culture practice: A Report of the Second ECVAM Task Force on good cell culture practice. Atla-Altern Lab Anim. 2005; 33(3):261–287.
21. Hefni D, Wahyuni FS. The Cytotoxicity Study of Lantana camara Linn Essential Oil on HeLa Cancer Cells Line. Phcog J. 2021; 13(6):1498-1501.
22. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Canc Res. 2010; 70(2):440–446.
23. Chakravarty M, Ganguli P, Murahari M, Sarkar RR, Peters GJ, Mayur YC. Study of combinatorial drug synergy of novel acridone derivatives with temozolomide using in-silico and in-vitro methods in the treatment of drug-resistant glioma. Front in Onco. 2021; 11:1-18.
24. Plana D, Palmer AC, Sorger PK. Independent drug action in combination therapy: implications for precision oncology. Canc Disc. 2022; 12(3):606-624.
25. Dewi IP, Dachriyanus YA, Ismail NH, Hefni D, Susanti M, Syafri S, Wahyuni FS. Curcuma Aeruginosa Roxb. Extract Inhibits the Production of Proinflammatory Cytokines on Raw 264.7 Macrophages. Int J App Pharm. 2024; 16(1):41-44.
26. Rahmawati N, Ismail NH, Hamidi D, Wahyuni FS. Cytotoxic Activity Screening of Various Uncaria Spp Plants on T47D Breast Cancer Cells. Trop J Nat Prod Res. 2023; 7(1):2218-2221.
27. Bonilla DL, Reinin G, Chua E. Full spectrum flow cytometry as a powerful technology for cancer immunotherapy research. Front in Mol Bio. 2021; 7:1-10.
28. Febriansah R, Putri DDP, Sarmoko, Nurulita NA, Meiyanto E, Nugroho AE. Hesperidin as a preventive resistance agent in MCF-7 breast cancer cells line resistance to doxorubicin. Asian Pac J Trop Biomed. 2014; 4(3):228–233.
29. Engel N, Oppermann C, Falodun A, Kragl U. Proliferative effects of five traditional Nigerian medicinal plant extracts on human breast and bone cancer cell lines. J Ethnopharmacol. 2011; 137(2):1003–1010.
30. Engel N, Falodun A, Kühn J, Kragl U, Langer P, Nebe B. Pro-apoptotic and anti-adhesive effects of four African plant extracts on the breast cancer cell line MCF-7. BMC Compl Altern Med. 2014; 14(1):1–13.
31. Putri RH, Soetrisno, Wasita B, Priyanto H, Pamungkasari EP, Cilmiaty R. Investigating the Effects of the Ethyl Acetate Fraction of Mas Banana Bracts: Suppressing Cell Growth, Promoting Cell Death, and Targeting Specific Molecules in Hela Cells. Trop J Nat Prod Res. 2024; 8(11):9035–9042
32. Jain P, Giustolisi GM, Atkinson S, Elnenaei MO, Morilla R, Owusu-Ankomah K, Rafiq-Mohammed F, Matutes E, Wotherspoon A, Catovsky D. Detection of cyclin D1 in B cell lymphoproliferative disorders by flow cytometry. J of Clin Path. 2002; 55(12):940-945.
33. Wahyuni FS, Shaari K, Stanslas J, Lajis N, Hamidi D. Cytotoxic compounds from the leaves of Garcinia cowa Roxb. J of App Pharm Sci. 2015; 5(2):6-11.
34. Trisuwan K, Ritthiwigrom T. Benzophenone and xanthone derivatives from the inflorescences of Garcinia cowa. Arch of Phar Res. 2012; 35:1733-1738.
35. Siddiqa A, Long LM, Li L, Marciniak RA, Kazhdan I. Expression of HER-2 in MCF-7 breast cancer cells modulates anti-apoptotic proteins Survivin and Bcl-2 via the extracellular signal-related kinase (ERK) and phosphoinositide-3 kinase (PI3K) signalling pathways. BMC Cancer. 2008; 8:1–8.
36. Burguin A, Furrer D, Ouellette G, Jacob S, Diorio C, Durocher F. Trastuzumab effects depend on HER2 phosphorylation in HER2-negative breast cancer cell lines. PLoS One. 2020; 15(6):1–17.
37. Shadeo A, Lam WL. Comprehensive copy number profiles of breast cancer cell model genomes. Breast Canc Res. 2006; 8:1-4.
38. Mosele F, Deluche E, Lusque A, Le Bescond L, Filleron T, Pradat Y, Ducoulombier A, Pistilli B, Bachelot T, Viret F, Levy C. Trastuzumab deruxtecan in metastatic breast cancer with variable HER2 expression: the phase 2 DAISY trial. Nat Med. 2023; 29(8):2110-2120.
39. Vu T, Claret FX. Trastuzumab: Updated mechanisms of action and resistance in breast cancer. Front Oncol. 2012; 2:62–67.
40. Liu J, Pan C, Guo L, Wu M, Guo J, Peng S, Wu Q, Zuo Q. A new mechanism of trastuzumab resistance in gastric cancer: MACC1 promotes the Warburg effect via activation of the PI3K/AKT signaling pathway. J of Hem & Onc. 2016; 9:1-5.
41. Vivekanandhan S, Knutson KL. Resistance to trastuzumab. Cancers. 2022; 14(20):5115-5141.
42. Li BT, Michelini F, Misale S, Cocco E, Baldino L, Cai Y, Shifman S, Tu HY, Myers ML, Xu C, Mattar M. HER2-mediated internalisation of cytotoxic agents in ERBB2 amplified or mutant lung cancers. Canc Disc. 2020; 10(5):674-687.
43. Collins DM, O'donovan N, McGowan PM, O'sullivan F, Duffy MJ, Crown J. Trastuzumab induces antibody-dependent cell-mediated cytotoxicity (ADCC) in HER-2-non-amplified breast cancer cell lines. Annals of Onco. 2012; 23(7):1788-1795.
44. Maadi H, Soheilifar MH, Choi WS, Moshtaghian A, Wang Z. Trastuzumab mechanism of action; 20 years of research to unravel a dilemma. Cancers. 2021; 13(14):3540-3557.
45. Le C. Experiment designs for the assessment of drug combination synergism. Austin Biom Biostat. 2014; 1(2):1–6.
46. Bijnsdorp I V, Giovannetti E, Peters GJ. Chapter 34 Analy of Drug Inter. 2011; 731:421–434.
47. Tinrat S. Phytochemical screenings, antibacterial and anti-biofilm activities of Garcinia cowa Roxb. leaves extracts and its synergistic effect with antibiotic. Phar Sci Asia. 2022; 1:49-56.
48. Negi PS, Jayaprakasha GK, Jena BS. Evaluation of antioxidant and antimutagenic activities of the extracts from the fruit rinds of Garcinia cowa. Int. J of Food Prop. 2010; 13(6):1256-1265.
49. Wahyuni FS, Febria S, Arisanty D. Apoptosis induction of cervical carcinoma HeLa cells line by dichloromethane fraction of the rinds of Garcinia cowa Roxb. Phcog J. 2017; 9(4):475-477.
50. Siridechakorn I, Phakhodee W, Ritthiwigrom T, Promgool T, Deachathai S, Cheenpracha S, Prawat U, Laphookhieo S. Antibacterial dihydrobenzopyran and xanthone derivatives from Garcinia cowa stem barks. Fitoterapia. 2012; 83(8):1430-1434.
51. Wang ZH, Zheng ZQ, Jia S, Liu SN, Xiao XF, Chen GY, Liang WQ, Lu XF. Trastuzumab resistance in HER2-positive breast cancer: Mechanisms, emerging biomarkers and targeting agents. Front Oncol. 2022; 12(10):1–9.
52. Lau KH, Tan AM, Shi Y. New and emerging targeted therapies for advanced breast cancer. Int J of Mol Sci. 2022; 23(4):2288-2308.
53. Hefni D, Dachriyanus, Nahda AM, Wahyuni FS. Effect of Cowanin on Cyclin D1 Expression In MCF-7/HER2 Breast Cancer Cells. Int J App Pharm. 2024; 16(1):149–151.
54. Xiao Y, Dong J. The hippo signaling pathway in cancer: a cell cycle perspective. Cancers. 2021; 13(24):6214-6241.
55. Wiecek AJ, Cutty SJ, Kornai D, Parreno-Centeno M, Gourmet LE, Tagliazucchi GM, Jacobson DH, Zhang P, Xiong L, Bond GL, Barr AR. Genomic hallmarks and therapeutic implications of G0 cell cycle arrest in cancer. Genome Biol. 2023; 24(1):1–35.
56. Ghafouri-Fard S, Khoshbakht T, Hussen BM, Dong P, Gassler N, Taheri M, Baniahmad A, Dilmaghani NA. A review on the role of cyclin-dependent kinases in cancers. Canc Cell Int. 2022; 22(1):325-394.
57. Cornwell JA, Crncec A, Afifi MM, Tang K, Amin R, Cappell SD. Loss of CDK4/6 activity in S/G2 phase leads to cell cycle reversal. Nature. 2023; 619(7969):363–370.
58. Bassi C, Fortin J, Snow BE, Wakeham A, Ho J, Haight J, You-Ten A, Cianci E, Buckler L, Gorrini C, Stambolic V. The PTEN and ATM axis controls the G1/S cell cycle checkpoint and tumorigenesis in HER2-positive breast cancer. Cell Death Dif. 2021; 28(11):3036-3051.
59. Shapiro GI, Harper JW. Anticancer drug targets: Cell cycle and checkpoint control. J of Clin Invest. 1999;104(12):1645–1653.
60. Hefni D, Dachriyanus WF, Yerizel E, Arisanty D, Yusra LN. Cowanin, a cytotoxic xanthone from asam kandis (Garcinia cowa roxb.), reduced cell migration and induced cell cycle arrest on T47D human cancer cell. Int. J. Adv. Sci. 2020; 10:2164-2169.
61. Wahyuni FS, Hui LS, Stanslas J, Lajis NH. Dachriyanus. Tetraprenyltoluquinone, an anticancer compound from Garcinia cowa Roxb, induce cell cycle arrest on H460 non small lung cancer cell line. Int J Pharm Sci Rev Res. 2015; 32(2):166-168.
62. Oktavia S, Wahyuni FS, Amir A. Piperine acts as an anticancer agent by reducing cyclooxygenase-2 activity and inducing apoptosis by activating p53 in HeLa cells. Trop J of Nat Prod Res. 2024; 8(2):6142-6146.
63. Zwartsen A, Chottanapund S, Kittakoop P, Navasumrit P, Ruchirawat M, Van Duursen MB, Van den Berg M. Evaluation of anti-tumour properties of two depsidones–Unguinol and Aspergillusidone D–in triple-negative MDA-MB-231 breast tumour cells. Toxicol Rep. 2019; 6:1216-1222.
64. Chottanapund S, Van Duursen MB, Zwartsen A, Timtavorn S, Navasumrit P, Kittakoop P, Sureram S, Ruchirawat M, Van den Berg M. Depsidones inhibit aromatase activity and tumor cell proliferation in a co-culture of human primary breast adipose fibroblasts and T47D breast tumor cells. Toxicol Rep. 2017; 1(4):165-171.
65. Lin MT, Lin CL, Lin TY, Cheng CW, Yang SF, Lin CL, Wu CC, Hsieh YH, Tsai JP. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway. Tumor Bio. 2016; 37:6987-6996.
66. Salakou S, Kardamakis D, Tsamandas AC, Zolota V, Apostolakis E, Tzelepi V, Papathanasopoulos P, Bonikos DS, Papapetropoulos T, Petsas T, Dougenis D. Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo. 2007; 21(1):123-132.
67. Lee YS, Kalimuthu K, Park YS, Luo X, Choudry MH, Bartlett DL, Lee YJ. BAX-dependent mitochondrial pathway mediates the crosstalk between ferroptosis and apoptosis. Apoptosis. 2020; 25:625-631.
68. Łasut-Szyszka B, Gdowicz-Kłosok A, Krześniak M, Głowala-Kosińska M, Będzińska A, Rusin M. Strong activation of p53 by actinomycin D and nutlin-3a overcomes the resistance of cancer cells to the pro-apoptotic activity of the FAS ligand. Apoptosis. 2024; 29(9):1515-1528.
69. Tchakarska G, Sola B. The double dealing of cyclin D1. Cell cycle. 2020; 19(2):163-178.