Cellular Response of Chitosan Loligo sp to Changes in Cell Metabolism of Enterococcus faecalis
Main Article Content
Abstract
Root canal treatment aims to eliminate infection and prevent recontamination, especially against Enterococcus faecalis (E. faecalis) bacteria resistant to antibiotics and disinfectants. Squid bone (Loligo Sp), containing chitosan with antibacterial and antioxidant properties, is potentially effective in killing E. faecalis and can be used as a natural ingredient in root canal care. This study evaluated the characteristics and effects of chitosan Loligo Sp in increasing toxicity and decreasing the viability and release of Nitric Oxide in E. faecalis cells. Chitosan characteristics were assessed using FTIR and GC-MS. The toxicity and viability of E. faecalis cells challenged with chitosan were evaluated with an MTT assay, bacterial cell morphology was examined by a microscope, and bacterial NO value was assessed using FTIR. This study shows that chitosan from squid bones has characteristics that support its use as an antibacterial agent. A chitosan concentration of 10% indicates more significant toxicity against E. faecalis cells, reaching 85%, approximating the positive chlorhexidine (CHX) control value of 90% toxicity. Chitosan significantly decreased the viability of E. faecalis at a concentration of 10%, reducing its viability by 27.8% (p=0.013). In addition, chitosan also inhibits the release of Nitric Oxide by E. faecalis, with the highest inhibition of 80% at a concentration of 10% (p=0.001). Chitosan extracted from squid bones effectively increases toxicity and inhibits E. faecalis's viability and Nitric Oxide release from the bacteria, showing strong potential as an antimicrobial agent.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Soraya C, Alibasyah ZM, Nazar M, Gani BA. Chemical Constituents of Moringa oleifera Leaves of Ethanol Extract and its Cytotoxicity against Enterococcus faecalis of Root Canal Isolate. Res J Pharm Technol. 2022;15(8):3523-3530. Doi:10.52711/0974-360X.2022.00591
2. Soraya C, Mubarak Z, Gani BA. The growth and biofilm formation of Enterococcus faecalis in ethanol extract of Citrus aurantiifolia Indonesian species. J Pharm Pharmacog Res. 2020;8(6):558-568. Doi:10.56499/jppres20.895_8.6.558
3. Soraya C, Batubara FY, Nasroen SL, Jakfar S, Gani BA. Role of Moringa oleifera irrigation solution on the cell metabolism change of Streptococcus mutans. J Adv Pharm Technol Res. 2024;15(3):200-207. Doi:10.4103/JAPTR.JAPTR_442_23
4. Ibrahim H, El-Zairy E. Chitosan as a biomaterial—structure, properties, and electrospun nanofibers. Concepts, compounds, and the alternatives of antibacterials. In Tech Open. 2015;1(1):81-101. Doi: 10.5772/61300
5. Singh J, Prasad R, Kaur H, Jajoria K, Chahal AS, Verma A, Bahhou J.. Bioactive Compounds, Pharmacological Properties, and Utilization of Pomegranate (Punica granatum L.): A Comprehensive Review. Trop J Nat Prod Res. 2023;7(9):3856-3873. Doi:10.26538/tjnpr/v7i9.2
6. Kim S. Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti‐inflammatory activities. Int J Polym Sci. 2018;2018(1):1708172. Doi:10.1155/2018/1708172.
7. Simanjuntak PA, Djauharie N, Nursasongko B. Antibacterial effectiveness of 2% chitosan and 2% chlorhexidine against Enterococcus faecalis in biofilm (Laboratory experiment). Int J Appl Pharm 2019;11(01):44-48. Doi:10.22159/ijap.2019.v11s1.163
8. Abidin T, Susilo D, Gani BA. The effectiveness of nano-chitosan high molecular 0.2% as irrigant agent against Enterococcus faecalis with passive ultrasonic irrigant. J Conserv Dent. 2022 ;25(1):37-41. Doi: 10.4103/jcd.jcd_437_21.
9. Gomes BPFA, Aveiro E, Kishen A. Irrigants and irrigation activation systems in Endodontics. Braz Dent J. 2023;34(4):1-33. Doi: 10.1590/0103-6440202305577
10. Lestari NRD, Cahyaningrum SE, Herdyastuti N, Setyarini W, Arizandy RY. Antibacterial and Wound Healing Effects of Chitosan-Silver Nanoparticle and Binahong (Anredera cordifolia) Gel Modified with Cinnamon Essential Oil: Trop J. Nat Prod Res. 2024;8(1):5936-5945. Doi:10.26538/tjnpr/v8i1.32.
11. Cicciù M, Fiorillo L, Cervino G. Chitosan Use in Dentistry: A Systematic Review of Recent Clinical Studies. Mar Drugs. 2019;17(7):417. Doi:10.3390/md17070417.
12. Sambyal K, Sharma P, Singh RV. Antimicrobial Activity of Chitooligosaccharides. Chitooligosaccharides: Prevent Control Dis: Springer; 2022. p. 301-307. Doi:10.1007/978-3-030-92806-3_18
13. Gani BA, Jakfar S, Nasution AI, Nazar M, Fathmiyah S. The pH stability of film membrane of nano chitosan resveratrol in various solvents. Paper presented at AIP Conference Proceedings. 2024. 040034: 2-5. Doi:10.1063/5.0202138
14. Bui-Phuc T, Dinh-Phong N, Thai-Hoang L, Anh-Dao L-T, Cong-Hau N. Preparation of Antibacterial Chitosan Membrane and Potential Application as Coating in Maintaining the Quality of Jackfruit. Trop J. Nat Prod Res. 2023;7(9). 4059-4064. Doi: 10.26538/tjnpr/v7i9.32
15. Soraya C, Syafriza D, Gani BA. Antibacterial effect of Moringa oleifera gel to prevent the growth, biofilm formation, and cytotoxicity of Streptococcus mutans. J Int Dent Med Res. 2022;15(3):1053-1061.
16. Gani BA, Asmah N, Soraya C, Syafriza D, Rezeki S, Nazar M, Jakfar S, Soedarsono N. Characteristics and antibacterial properties of film membrane of chitosan-resveratrol for wound dressing. Emerg Sci J. 2023;7(3):821-842. Doi:10.28991/ESJ-2023-07-03-012
17. Marpaung YA, Abidin T, Ilyas S, Nainggolan I, Gani BA. Role of Nacre and Biodentine to Inducing the TGF-β1 in the Dentin Tertiary Formation on the Pulpitis Reversible of Rattus norvegicus. Res J Pharm Technol. 2022;15(8):3479-3484. Doi:10.52711/0974-360X.2022.00583
18. Dutta A. Fourier transform infrared spectroscopy. Spectroscopic methods for nanomaterials characterization. Micro Nano Technol. 2017:73-93. Doi:10.1016/B978-0-323-46140-5.00004-2
19. Monir M, Elsayed RE, Azzam RA, Madkour TM. Novel High-Performance Functionalized and Grafted Bio-Based Chitosan Adsorbents for the Efficient and Selective Removal of Toxic Heavy Metals from Contaminated Water. Polymers (Basel). 2024 ;16(12):1718. Doi: 10.3390/polym16121718.
20. Stodolak-Zych E, Jeleń P, Dzierzkowska E, Krok-Borkowicz M, Zych Ł, Boguń M, Rapacz-Kmita A, Kolesińska B. Modification of chitosan fibers with short peptides as a model of synthetic extracellular matrix. J Mol Struct. 2020;1211:128061. Doi.org/10.1016/j.molstruc.2020.128061
21. Wang W, Xue C, Mao X. Chitosan: Structural modification, biological activity and application. Int J Biol Macromol. 2020 ;164:4532-4546. Doi: 10.1016/j.ijbiomac.2020.09.042.
22. Khan A, Alamry KA. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review. Carbohydr Res. 2021;506:108368. Doi: 10.1016/j.carres.2021.108368.
23. Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial Actions and Applications of Chitosan. Polymers (Basel). 2021;13(6):904. Doi: 10.3390/polym13060904.
24. Zhang J, Su P, Chen H, Qiao M, Yang B, Zhao X. Impact of reactive oxygen species on cell activity and structural integrity of Gram-positive and Gram-negative bacteria in electrochemical disinfection system. Chem Eng J. 2023;451:138879. Doi:10.1016/j.cej.2022.138879
25. Alfei S, Schito AM. Positively Charged Polymers as Promising Devices against Multidrug-Resistant Gram-Negative Bacteria: A Review. Polymers (Basel). 2020;12(5):1195. Doi: 10.3390/polym12051195.
26. Pandit S, Sarode S, Chandrasekhar K. Fundamentals of bacterial biofilm: present state of the art. Quorum sensing and its biotechnological applications 2018:43-60. Doi:10.1007/978-981-13-0848-2_3
27. Siddiqui SA, Rahmadhia SN, Nair S, Sabu S. Unlocking the extraction potential of bionanomaterials from aquatic sources and byproducts-A comprehensive review. Process Saf Environ Prot. 2024;19 (Part A): 959-982. Doi:10.1016/j.psep.2024.08.035
28. Yan D, Li Y, Liu Y, Li N, Zhang X, Yan C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules. 2021;26(23):7136. Doi: 10.3390/molecules26237136
29. Bell A, Severi E, Owen CD, Latousakis D, Juge N. Biochemical and structural basis of sialic acid utilization by gut microbes. J Biol Chem. 2023;299(3):102989. Doi: 10.1016/j.jbc.2023.102989
30. Ardean C, Davidescu CM, Nemeş NS, Negrea A, Ciopec M, Duteanu N, Negrea P, Duda-Seiman D, Muntean D. Antimicrobial Activities of Chitosan Derivatives. Pharmaceutics. 2021;13(10):1639. Doi: 10.3390/pharmaceutics13101639
31. Román-Doval R, Torres-Arellanes SP, Tenorio-Barajas AY, Gómez-Sánchez A, Valencia-Lazcano AA. Chitosan: Properties and Its Application in Agriculture in Context of Molecular Weight. Polymers (Basel). 2023;15(13):2867. Doi: 10.3390/polym15132867
32. Rashki S, Asgarpour K, Tarrahimofrad H, Hashemipour M, Ebrahimi MS, Fathizadeh H, Khorshidi A, Khan H, Marzhoseyni Z, Salavati-Niasari M, Mirzaei H. Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym. 2021;251:117108. Doi: 10.1016/j.carbpol.2020.117108..
33. Sousa MN, Macedo AT, Ferreira GF, Furtado HLA, Pinheiro AJMCR, Lima-Neto LG, Fontes VC, Ferreira RLPS, Monteiro CA, Falcai A, Gomes LN, Bragança QDSR, Torres DSB, Galvão LCC, Holanda RA, Santos JRA. Hydroalcoholic Leaf Extract of Punica granatum, alone and in Combination with Calcium Hydroxide, Is Effective against Mono- and Polymicrobial Biofilms of Enterococcus faecalis and Candida albicans. Antibiotics (Basel). 2022;11(5):584. Doi: 10.3390/antibiotics11050584.
34. Miguel SP, Moreira AF, Correia IJ. Chitosan based-asymmetric membranes for wound healing: A review. Int J Biol Macromol. 2019;127:460-475. Doi: 10.1016/j.ijbiomac.2019.01.072..
35. Wang N, Ji Y, Zhu Y, Wu X, Mei L, Zhang H, Deng J, Wang S. Antibacterial effect of chitosan and its derivative on Enterococcus faecalis associated with endodontic infection. Exp Ther Med. 2020;19(6):3805-3813. Doi: 10.3892/etm.2020.8656.
36. Hasan N, Lee J, Ahn HJ, Hwang WR, Bahar MA, Habibie H, Amir MN, Lallo S, Son HJ, Yoo JW. Nitric Oxide-Releasing Bacterial Cellulose/Chitosan Crosslinked Hydrogels for the Treatment of Polymicrobial Wound Infections. Pharmaceutics. 2021;14(1):22. Doi: 10.3390/pharmaceutics14010022..
37. Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA. When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress. Front Plant Sci. 2016;7:471. Doi: 10.3389/fpls.2016.00471.
38. Roy S, Mondal A, Yadav V, Sarkar A, Banerjee R, Sanpui P, Jaiswal A. Mechanistic Insight into the Antibacterial Activity of Chitosan Exfoliated MoS2 Nanosheets: Membrane Damage, Metabolic Inactivation, and Oxidative Stress. ACS Appl Bio Mater. 2019;2(7):2738-2755. Doi: 10.1021/acsabm.9b00124.