Assessment of Extract from Glucose Oxidase-Cellulase Treated Jute Sticks and Green Amaranth Sticks for the Production of Lignocellulose-Based Bioethanol
Main Article Content
Abstract
The possibility that some carbohydrate oxidases are capable of catalytically cleaving glycosidic bonds offers the opportunity for glucose oxidase to achieve the depolymerization of agro wastes required in the production of second-generation bioethanol. The present study aimed to ascertain the effect of glucose oxidase and cellulase isolated from Aspergillus sp. on locally sourced jute sticks and green amaranth sticks for the production of bioethanol. The Box Behnken design was employed to assess the effect of the different concentrations of sucrose, waste extracts and pH on fermentation efficiency, ethanol percent yield, and reducing sugar yield. The selected agro wastes were subjected to fiber detergent analysis, ATR-FTIR, XRD, and SEM. The fermentation broth was subjected to ATR-FTIR analysis. Compared to oven-dried jute extract, the maximum ethanol yield was achieved at 72 hours for 50% broth containing oven-dried green amaranth extract by a difference of 65.6%. Optimization using the Box Behnken design resulted in an increased yield of ethanol (198%), fermentation efficiency (3.86%) and reducing sugar yield (27.97%) at the combination of factor levels of 5% (sucrose concentration), 2.5% (oven-dried green amaranth extract concentration) and pH 4.5. The cleaving of glycosidic bonds in the waste samples was revealed by ATR-FTIR and further confirmed by SEM. With the evidence of the characteristic bands associated with the presence of ethanol in the fermentation broth, it was concluded that the inclusion of glucose oxidase at low concentrations in the presence of cellulase supported the release of reducing sugars required for the production of lignocellulose – based bioethanol.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
(1) Ritchie H, Roser M. CO₂ emissions. [Online]. 2024 [cited 2024 Dec 27]. Available from: https://ourworldindata.org/co2-emissions.
(2) Ritchie, H, Rosado, P. Fossil fuels. [Online]. 2017 [cited 2025 Jan 23]. Available from: https://ourworldindata.org/fossil-fuels.
(3) Gross, S. Why are fossil fuels so hard to quit? [Online]. 2020 [cited 2022 Jan 27]. Available from: http://www.brookings.edu/essay/why-are-fossil-fuel-so-hard-to-quit/.
(4) Lugani Y, Rai R, Prabhu AA, Maan P, Hans M, Kumar V, Kumar S, Chandel AK, Sengar RS. Recent advances in bioethanol production from lignocelluloses: A comprehensive review with a focus on enzyme engineering and designer biocatalysts. Biofuel Res. J. 2020; 28:1267-1295. Doi: 10.18331/BRJ2020.7.4.5
(5) Okafor C, Madu C, Ajaero C, Ibekwe J Bebenimibo H, Nzekwe C. Moving beyond fossil fuel in an oil-exporting and emerging economy: Paradigm shift. AIMS Energy. 2021; 9(2):379-413. DOI: 10.3934/energy.2021020
(6) Bušić A, Marđetko N, Kundas S, Morzak G, Belskaya H, Šantek MI, Komes D, Novak S, Šantek B. Bioethanol production from renewable raw materials and its separation and purification: A Review. Food Technol. Biotechnol. 2020; 56(3):289-311.
(7) Owusu PA, Asumadu-Sarkodie SA. Review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016; 3:1-15. Doi: 10.1080/23311916.2016.1167990
(8) Adewuyi A. Challenges and prospects of renewable energy in Nigeria: A case of bioethanol and biodiesel production. Energy Rep. 2020; 6:77-88. Doi: 10.1016/j.egyr.2019.10.005
(9) International Energy Agency; International Renewable Energy Agency; United Nations Statistics Division; World Bank; World Health Organization. Tracking SDG 7: The Energy progress report. [Online]. 2020 [cited 2024 Sept 7]. Available from: http://hdl.handle.net/10986/33822.
(10) Basaglia M, D’Ambra M, Piubello G, Zanconato V, Favaro L, Casella S. Agro-food residues and bioethanol potential: A study for a specific area. Processes. 2021; 9(344):1-14.
(11) Ezejiofor TIN, Enebaku UE, Ogueke C. Waste to wealth-value recovery from agro-food processing wastes using Biotechnology: A review. Br. Biotechnol. J. 2014; 4(4):418-481.
(12) Saldarriaga-Hernández S, Velasco-Ayala C, Leal-Isla FP, de Jesús Rostro-Alanis M, Parra-Saldivar R, Iqbal HMN, Carrillo-Nieves D. Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. Int. J. Biol. Macromol. 2020; 161:1099-1116. Doi: 10.1016/j.ijbiomac.2020.06.047
(13) SDG 12.5: Substantially Reduce Waste Generation. [Online]. 2024 [cited 2024 Dec 28]. Available from: https://ocm.iccrom.org/sdgs/sdg-12-responsible-consumption-and-production/sdg-125-substantially-reduce-waste-generation?page=5.
(14) Manavalan T, Stepnov AA, Hegnar OA, Eijsink VGH. Sugar oxidoreductases and LPMOs – Two sides of the same polysaccharide degradation story? Carbohydr. Res. 2021; 505:1-10. Doi: 10.1016/j.carres.2021.108350
(15) Rai R, Basotra N, Kaur B, Di Falco M, Tsang A, Chadha B. Exoproteome profile reveals thermophilic fungus Crassicarpon thermophilum (strain 6GKB; syn. Corynascus thermophilus) as a rich source of cellobiose dehydrogenase for enhanced saccharification of bagasse. Biomass Bioenergy. 2019; 132:105438. Doi: 10.1016/j.biombioe.2019.105438
(16) Cannella D, Hsieh CWC, Felby C, Jørgensen H. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 2012; 5(26):1-10. Doi: 10.1186/1754-6834-5-26
(17) Tao W, Wang Y, Walters E, Lin H, Li S, Huang H, Kasuga T, Fan Z. Homoethanol production from glycerol and gluconate using recombinant Klebsiella oxytoca strains. Appl. Environ. Microbiol. 2018; 85(5):1-12. Doi: 10.1128/AEM.02122-18.
(18) Haq IU, Nawaz A, Mukhtar H, Ahmed W. Isolation and identification of glucose oxidase hyper producing strain of Aspergillus niger. Br. Microbiol. Res. J. 2014; 4(2):195-205. Doi: 10.9734/bmrj/2014/3082
(19) Liu Z, Yuan M, Zhang X, Liang Q, Yang M, Mou H, Zhu CA. thermostable glucose oxidase from Aspergillus heteromophus CBS 117.55 with broad pH stability and digestive enzyme resistance. Protein Expr. Purif. 2020; 176:1-8. Doi: 10.1016/j.pep.2020.105717.
(20) Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959; 31:426-428.
(21) Pathania N, Pachouri UC, Kumar A. Isolation, biochemical and molecular characterization of cellulase producing fungi. Int. J. Adv. Res. 2015; 3(10):842-858.
(22) Igunnu A, Malomo SO, Saliu BK. Activatory Effects of manganese and cobalt ions on the activity of cellulase produced by Aspergillus niger. Nigerian J. Biochem, Molecular Biol. 2013; 28(1-2):60-68.
23) Koshy BE, Pandey FK, Bhatnagar T. Quantitative estimation of bioethanol produced from lignocellulosic & household wastes. Int. J. Life Sci. Res. 2014; 2(4):130-145.
(24) Sokan-Adeaga AA, Ana GREE, Olorunnisola AO, Sokan-Adeaga MA, Roy H, Reza MS, Islam MS. Ethanol production from cassava peels using Saccharomyces cerevisiae via ethanologenic fermentation process. Arab Gulf J. Sci. Res. 2024; 1-21. Doi: 10.1108/AGJSR-06-2023-0264
(25) Braga A, Gomes D, Amorim C, Silvério SC, Alves J, Rainha J, Cardoso BB, Rodrigues JL, Rodrigues LR. One-step production of a novel prebiotic mixture using Zymomonas mobilis ZM4. Biochem. Eng. J. 2022; 183:1-8. Doi: 10.1016/j.bej.2022.108443
(26) Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991; 74:3583-3597. Doi: 10.3168/jds.S0022-0302(91)78551-2
(27) Godbole MD, Sabale PM, Mathur VB. Development of lamivudine liposomes by three-level factorial design approach for optimum entrapment and enhancing tissue targeting. J. Microencapsul. 2020; 37:431-444. Doi: 10.1080/02652048.2020.1778806
(28) Ruan P, Raghavan V, Gariepy Y, Du J. Characterization of flax water retting of different durations in laboratory condition and evaluation of its fiber properties, BioRes. 2015; 10(2):3553-3563.
(29) Karppinen A. Temperature stability of cellulose fibrils. [Online]. 2018 [cited 2025 February 6]. Available from: https://blog.borregaard.com/exilva/temperature-stability-of-cellulose-fibrils.
(30) Carrillo-Nieves D, Alanís MJR, Quiroz RDLC, Ruiz HA, Iqbal HMN, Parra-Saldívar R. Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renew. Sustain. Energ. 2019; 102:63–74. Doi: 10.1016/j.rser.2018.11.031
(31) Deb U, Bhuyan N, Bhattacharya SS, Kataki R. Characterization of agro-waste and weed biomass to assess their potential for bioenergy production. Int. J. Renew. Energy Dev. 2019; 8(3):243–251. Doi:10.14710/ijred.8.3.243-251.
(32) Lupidi G, Pastore G, Marcantoni E, Gabrielli S. Recent developments in chemical derivatization of microcrystalline cellulose (MCC): Pre-treatments, functionalization, and applications. Molecules. 2023; 28(5):1-21. Doi.org/10.3390/molecules28052009.
(33) Yu NN, Ketya W, Choi EH, Park G. Plasma promotes fungal cellulase production by regulating the levels of intracellular NO and Ca2+. Int. J. Mol. Sci. 2022; 23:1-19. Doi: 10.3390/ijms23126668.
(34) Fashola FA, Fadipe OT, Nwagala PN, Olatope SO, Augustine CP, Ibidapo OI, James IC, Aderinwale FB, Orji FA, Lawal AK. Characterization of novel alkaline protease producing Bacillus subtilis C3a-FIIRO with potential for industrial application. Nigeria J. Biotech. 2021; 38(2):56–66. Doi: 10.4314/njb.v38i2.6
(35) Nandiyanto ABD, Oktiani R, Ragadhita R. How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 2019; 4(1):97–118. Doi: 10.17509/ijost.v4i1.15806.
(36) Spiridon I, Teacă C-A, Bodîrlău R. Structural changes evidenced by FTIR spectroscopy in cellulosic materials after pre-treatment with ionic liquid and enzymatic hydrolysis. BioRes. 2011; 6(1):400-413.
(37) Smith, B.C. The carbonyl group part V: Carboxylates- coming clean. Spectroscopy. 2018; 33(5):20-23.
(38) Rutkis R, Ļaša Z, Rubina M, Ščerbaka R, Kalniņš G, Bogans J, Kalnenieks U. Antimicrobial activity of Zymomonas mobilis is related to its aerobic catabolism and acid resistance. Fermentation. 2022; 8(77):1-14. Doi: 10.3390/fermentation8020077
(39) Rabiu AK, Elinge CM, Ambursa MM, Rabiu AK, Samaila DS. Characterization of bioethanol fuel from rice and corn straws: A comparative study. Equity J. Sci. Technol. 2021; 8(1):74-78.
(40) Phwan CK, Chew KW, Sebayang AH, Ong HC, Ling TC, Malek MA, Ho YC, Show PL. Effects of acids pre‑treatment on the microbial fermentation process for bioethanol production from microalgae. Biotechnol. Biofuels 2019; 12(191): 1-8. Doi: 10.1186/s13068-019-1533-5
(41) Bridelli MG. Fourier transform infrared spectroscopy in the study of hydrated biological macromolecules. In: Goran S. Nikolic, Milorad D. Cakic and Dragan J. Cvetkovic (eds) Fourier Transforms - High-tech application and current trends. United Kingdom: IntechOpen Limited; 2017. 191-213 p. Doi: 10.5772/66576.