Identification of Potential Medicinal Plant Species in Multiflora Trigona Species Honey from Riau Using a Metabarcoding Approach

Main Article Content

Rini Hafzari
Melva Silitonga
Eva S. Dasopang
Endang S. Gultom

Abstract

Stingless bees (Trigona sp.) naturally produce Trigona honey from the nectar of different plants. This honey is known to have various health benefits that are influenced by the composition of the nectar collected by the bees. The aim of this study was to use the DNA metabarcoding approach to identify the plant species that makeup Trigona sp. multiflora honey from Riau, Indonesia. DNA was extracted from the honey samples obtained from the Riau Forest following standard procedure. The extracted DNA was amplified by polymerase chain reaction (PCR) using universal primers for the target genes internal transcribed spacer 2 (ITS2). and sequenced using next generation sequencing (NGS) technique. The results of the analysis showed the presence of three plant genera, namely; Syzygium, Amaranthus, and Capsicum. Syzygium aromaticum was found as the dominant species with a relative abundance of 46%, followed by Amaranthus dubius (44%) and Capsicum annuum (10%). This metabarcoding method has proven effective in identifying plant species that make up Trigona multiflora honey and has the potential to identify herbal medicinal plants, such as Syzygium aromaticum which has antibacterial and anti-inflammatory properties. These findings did not only provide insight into the food sources of Trigona bees but also open up opportunities for further exploration into the use of plants as herbal medicines.

Downloads

Article Details

How to Cite
Hafzari, R., Silitonga, M., Dasopang, E. S., & Gultom, E. S. (2025). Identification of Potential Medicinal Plant Species in Multiflora Trigona Species Honey from Riau Using a Metabarcoding Approach. Tropical Journal of Natural Product Research (TJNPR), 9(3), 1187 – 1191. https://doi.org/10.26538/tjnpr/v9i3.39
Section
Articles

References

1. Soares S, Amaral JS, Oliveira MBPP, Mafra I. Improving DNA Isolation From Honey for the Botanical Origin Identification. Food Contr. 2015; 48:130-136.

2. Yanti EN and Kustiawan PM. Study of Indonesian Stingless Bee (Trigona sp.) Propolis Potential as Antioxidant: A Review. J Food Sci Prod. 2023; 9(3):261-269..

3. Ávila S, Hornung PS, Teixeira GL, Malunga LN, Apea-Bah FB, Beux MR, Beta T, Ribani RH. Bioactive Compounds and Biological Properties of Brazilian Stingless Bee Honey Have a Strong Relationship With the Pollen Floral Origin. Food Res Int. 2019; 123:1-10.

4. Jain S, Jesus F, Marchioro G, Araújo E. Extraction of DNA From Honey and its Amplification by PCR for Botanical Identification. Food Sci Technol. 2013; 33(4):753-756.

5. Irish J, Blair S, Carter DA. The Antibacterial Activity of Honey Derived from Australian Flora. Plos One. 2011; 6(3):1-9.

6. Bodor Z, Kovacs Z, Benedek C, Hitka G, Behling H. Origin Identification of Hungarian Honey Using Melissopalynology, Physicochemical Analysis, and Near Infrared Spectroscopy. Molecules. 2021; 26(23):1-15.

7. Zhao H, Cheng N, He L, Peng G, Xue X, Wu L, Cao W. Antioxidant and Hepatoprotective Effects of A. cerana Honey Against Acute Alcohol-Induced Liver Damage in Mice. Food Res Int. 2017; 101:35-44.

8. Gultom ES, Hasruddin H, Wasni NZ. Exploration of Endophytic Bacteria in Figs (Ficus carica L.) with Antibacterial Agent Potential. Trop J Nat Prod Res. 2023; 7(7):3342-3350.

9. Hafzari R, Annisa A, Muchamad Nur C, Puspa KL, Huda PN, Nurbaity S, Kusuma MDRA. Precision and Reliability of Nanoplate Digital PCR System for Pork DNA Identification and Quantification. J Microbiol Biotechnol Food Sci. 2024; 14(1):1-3.

10. Mena JL, Yagui H, Tejeda V, Bonifaz E, Bellemain E, Valentini A, Tobler MW, Sánchez-Vendizú P, Lyet A. Environmental DNA Metabarcoding as a Useful Tool for Evaluating Terrestrial Mammal Diversity in Tropical Forests. Ecol Appl. 2021; 31(5):1-13.

11. Kumar P, Babu G, Lakra. DNA Metabarcoding: a new approach for rapid biodiversity assessment. J Mol Cell Biol. 2015; 2(1):1-9.

12. Hawkins J, Vere Nd, Griffith A, Ford CR, Allainguillaume J, Hegarty MJ, Baillie L, Adams-Groom B. Using DNA Metabarcoding to Identify the Floral Composition of Honey: A New Tool for Investigating Honey Bee Foraging Preferences. PloS One. 2015; 10(8):1-20.

13. Milla L, Sniderman K, Lines R, Mousavi-Derazmahalleh M, Encinas-Viso F. Pollen DNA Metabarcoding Identifies Regional Provenance and High Plant Diversity in Australian Honey. Ecol Evol. 2021; 11(13):8683-8698.

14. Khansaritoreh E, Salmaki Y, Ramezani E, Akbari Azirani T, Keller A, Neumann K, Alizadeh K, Zarre S, Beckh G, Behling H. Employing DNA Metabarcoding to Determine the Geographical Origin of Honey. Heliyon. 2020; 6(11):1-6.

15. Urumarudappa SKJ, Tungphatthong C, Prombutara P, Sukrong S. DNA Metabarcoding to Unravel Plant Species Composition in Selected Herbal Medicines on the National List of Essential Medicines (NLEM) of Thailand. Sci Rep. 2020; 10(1):1-11.

16. Balkanska R, Stefanova K, Stoikova-Grigorova R, Ignatova M. A Preliminary Assessment Of TRNH-PSBA as DNA Barcode for Botanical Identification of Polyfloral Honey Samples and Comparison with Rbcl Marker. Bulg J Agric Sci. 2020; 26(1):238-242

17. Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. ITS as an Environmental DNA Barcode for Fungi: An In Silico Approach Reveals Potential PCR Biases. BMC Microbiol. 2010; 10(1):1-9.

18. Martin M. CUTADAPT Removes Adapter Sequences From High-Throughput Sequencing Reads. EMBnet J. 2011; 17:10-12.

19. Sophian A, Purwaningsih R, Muindar M, Igirisa EPJ, Amirullah ML. Short Communication: Analysis of Purity and Concentration of DNA Extracted From Intron Patho Gene-Spin Extraction on Crab Processed Food Product Samples. Asian J Trop Biotechnol. 2021; 18(1):28-31.

20. Boesenberg-Smith K, Pessarakli M, Wolk D. Assessment of DNA Yield and Purity: An Overlooked Detail of PCR Troubleshooting. Clin Microbiol Newsl. 2012; 34 (1):1-6.

21. Ralte L, Ralte L, Singh YT. Use of rbcL and ITS2 for DNA Barcoding and Identification of Solanaceae Plants in Hilly State of Mizoram, India. Res J Chem Environ. 2021; 22(3):616-623.

22. Zrimec J, Kopinč R, Rijavec T, Zrimec T, Lapanje A. Band Smearing of PCR Amplified Bacterial 16S rRNA Genes: Dependence on Initial PCR Target Diversity. J Microbiol Methods. 2013; 95(2):186-194.

23. Huda N, Ullah S, Wahab RA, Lani MN, Daud NHA, Shariff AHM, Ismail NI, Hamid AAA, Mohamad MAN, Huyop F. The first ITS2 sequence data set of eDNA from honey of Malaysian giant honeybees (Apis dorsata) and stingless bees (Heterotrigona itama) reveals plant species diversity. BMC Res Notes. 2023; 16(1):211.

24. Ansaloni LS, Kristl J, Domingues CEC, Gregorc A. An Overview of the Nutritional Requirements of Honey Bees (Apis mellifera Linnaeus, 1758). Insects. 2025; 16(1):1-12.

25. Thakur M. Bees as pollinators – Biodiversity and Conservation. Int Res J Agric Sci Soil Sci. 2012; 2(1):1-7