Combination of Red Okra and Stevia Ameliorates Oxidative Stress and Inflammation in Secondhand Smoke Rats
Main Article Content
Abstract
Individuals exposed to secondhand smoke (SHS) are at risk of experiencing oxidative stress and inflammation. Red okra and stevia have antioxidant and anti-inflammatory activities. This research aimed to validate the effectiveness of red okra and stevia in improving oxidative stress and inflammation in SHS rats. A posttest-only control group design was used, where 25 Wistar rats were divided into 5 groups including (1) Normal control, (2) SHS group, (3) Red okra group given red okra powder at a dose of 60 mg/200 g BW, (4) Stevia group given stevia powder at a dose of 100 mg/200 g BW, and (5) Kravia group administered with a combination of 60 mg/200 g BW red okra powder and 100 mg/200 g BW stevia powder. All rats, except normal control, were exposed to smoke from 4 cigarettes/day, 5 times/week, for 1 month. Furthermore, oxidative stress parameters measured were glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase, vitamin C, and malondialdehyde (MDA). Inflammation markers were interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), nuclear factor (NF-κβ), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), α-klotho, and insulin-like growth factor-1 (IGF-1). Collected data were analyzed using the One-way Analysis of Variance (ANOVA), followed by a post hoc test (p<0.05). Results showed that the combination of red okra and stevia significantly enhanced the levels of GPx, SOD, catalase, vitamin C, MDA, IL-6, TNF-α, NF-κβ, NLRP3, α-klotho, and IGF-1 (p<0.05) compared to SHS, red okra, and stevia groups. This combination was effective in improving oxidative stress and inflammation in SHS.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. GATS. Gats|Global Adult Tobacco Survey Fact Sheet Indonesia 2021 Gats Objectives. Fact Sheet Indonesia. 2021.
2. Caliri AW, Tommasi S, Besaratinia A. Relationships Among Smoking, Oxidative Stress, Inflammation, Macromolecular Damage, and Cancer. Mutat Res. 2021: 1;787:108365.
3. Ramos-González EJ, Bitzer-Quintero OK, Ortiz G, Hernández-Cruz JJ, Ramírez-Jirano LJ. Relationship Between Inflammation and Oxidative Stress and its Effect on Multiple Sclerosis. Neurologia (Engl Ed). 2024; 39(3):292–301.
4. Herrera ML, Champarini LG, Oliveros AL, Bellini MJ, Hereñú CB. Potentialities of IGF-1 for Regulating Oxidative Stress in Neuroinflammation and Neurodegeneration: Theoretical Review. Explor Neuroprot Ther. 2024; 4:442–458.
5. Erlandsson MC, Medina RD, Silfverswärd ST, Bokarewa MI. Smoking Functions as a Negative Regulator of IGF1 and Impairs Adipokine Network in Patients with Rheumatoid Arthritis. Mediators Inflamm. 2016;(3082820). https://onlinelibrary.wiley.com/doi/10.1155/2016/3082820
6. Donate-Correa J, Martín-Carro B, Cannata-Andía JB, Mora-Fernández C, Navarro-González JF. Klotho, Oxidative Stress, and Mitochondrial Damage in Kidney Disease. Antioxidants (Basel). 2023; 12(2):239.
7. Du R, Tang X, Jiang M, Qian S, Yang L, Tong X, Huang W. Association between cigarette smoking and serum alpha klotho levels among US adults over 40-years-old: a cross-sectional study. Sci Rep. 2023; 9:13(1)19519.
8. Tridge. Fresh Okra. Overview of Fresh Okra Market in Indonesia. 2025.
9. Nikpayam O, Safaei E, Bahreini N, Saghafi-Asl M. The Effects of Okra (Abelmoschus esculentus L.) Products on Glycemic Control and Lipid Profile: A Comprehensive Systematic Review. J Funct Foods. 2021; 87:104795.
10. Prabhune A, Sharma M, Ojha B, Prabhune CA. Abelmoschus esculentus (Okra) Potential Natural Compound for Prevention and Management of Diabetes and Diabetic Induced Hyperglycemia: Review. Int J Herb Med. 2017; 5(52):65–68.
11. Tyagita N, Utami KP, Zulkarnain FH, Rossandini SM, Pertiwi NP, Rifki MA, Safitri HA. Okra Infusion Water Improving Stress Oxidative and Inflammatory Markers on Hyperglycemic Rats. Bangladesh J Med Sci. 2019; 18(4):748–752.
12. Yan T, Liu B, Wang N, Liao Z, Wu B, He B, Jia Y. The flavonoids of Okra Insulates Against Oxidative Stress, Neuroinflammation and Restores BDNF Levels in Aβ1-42 Induced Mouse Model of Alzheimer’s Disease. Exp Gerontol. 2021; 147:111263.
13. Wahyuningsih SPA, Mwendolwa AA, Winarni D, Anggreini RW, Mamuaya BKK. Protective Effect of Red Okra (Abelmoschus esculentus (L.) Moench) Pods against Sodium Nitrite-Induced Liver Injury in Mice. Vet Med Int. 2021; 2021:6647800.
14. Damayanthi E, Rimbawan R, Handharyani E. Potential of okra (Abelmoschus esculentus L.) Extract to Reduce Blood Glucose and Malondialdehyde (MDA) Liver in Streptozotocin-Induced Diabetic Rats. J Gizi dan Pangan. 2018; 13(1):47–54.
15. Tyagita N, Mahati E, Safitri AH. Superiority of Purple Okra (Abelmoschus esculentus) to Green Okra in Insulin Resistance and Pancreatic β Cell Improvement in Diabetic Rats. Folia Med (Plovdiv). 2021; 63(1):51–58.
16. Akinoso R, Adegoroye EO, Sanusi MS. Effects of Roasting on Physicochemical Properties and Fatty Acids Composition of Okra Seed Oil. Meas Food. 2023; 9:100076.
17. Papaefthimiou M, Kontou PI, Bagos PG, Braliou GG. Antioxidant Activity of Leaf Extracts from Stevia rebaudiana Bertoni Exerts Attenuating Effect on Diseased Experimental Rats: A Systematic Review and Meta-Analysis. Nutrients. 2023; 15:15.
18. Kozma R de las H, Alves EM, Barbosa-de-Oliveira VA, Lopes FDTQ dos S, Guardia RC, Buzo HV, de Faria CA, Yamashita C, Junior MC, Frei F, Ribeiro-Paes MJdO, Ribeiro-Paes JT. A new experimental model of cigarette smoke-induced emphysema in Wistar rats. J Bras Pneumol. 2014; 40(1):46–54.
19. Abbas AY, Muhammad I, Abdulrahman MB, Bilbis LS. Antioxidant effect of ex-maradi okra fruit variety (Abelmuscus esculentus) on Alloxan-Induced Diabetic Rats. Trop J Nat Prod Res. 2020; 4(3):105–12.
20. Abo Elnaga NIE, Massoud MI, Yousef MI, Mohamed HHA. Effect of Stevia Sweetener Consumption as Non-Caloric Sweetening on Body Weight Gain and Biochemical’s Parameters in Overweight Female Rats. Annals Agric Sci. 2016; 61(1):155–163.
21. Kuang H, Feng J, Li Z, Tan J, Zhu W, Lin S, Pang Q, Ye Y, Fan R. Volatile Organic Compounds from Second-Hand Smoke May Increase Susceptibility of Children Through Oxidative Stress Damage. Environ Res. 2022; 207(112227).
22. Joshi B, Singh S, Sharma P, Mohapatra T, Kumar P. Effect of Cigarette Smoking on Selected Antioxidant Enzymes and Oxidative Stress Biomarkers. J Clin Diagn Res. 2020; 14(10):19–23.
23. Wahyuningsih SPA, Savira NII, Anggraini DW, Winarni D, Suhargo L, Kusuma BWA, Nindyasari F, Setianingsih N, Mwendolwa AA. Antioxidant and Nephroprotective Effects of Okra Pods Extract (Abelmoschus esculentus L.) against Lead Acetate-Induced Toxicity in Mice. Scientifica (Cairo). 2020;2020.
24. Speer H, D’Cunha NM, Alexopoulos NI, McKune AJ, Naumovski N. Anthocyanins and Human Health—A Focus on Oxidative Stress, Inflammation and Disease. Antioxidants. 2020; 9(5):1–13.
25. Zhao L, Yang H, Xu M, Wang X, Wang C, Lian Y, Mehmood A, Dai H. Stevia Residue Extract Ameliorates Oxidative Stress in d-Galactose-Induced Aging Mice via Akt/Nrf2/HO-1 Pathway. J Funct Foods. 2019; 52:587-595
26. Xu Q, Liu M, Chao X, Zhang C, Yang H, Chen J, Zhou B. Stevioside Improves Antioxidant Capacity and Intestinal Barrier Function while Attenuating Inflammation and Apoptosis by Regulating the NF- κ B / MAPK Pathways in Diquat-Induced Oxidative Stress of IPEC-J2 Cells. Antioxidants (Basel). 2023; 12(5):1070.
27. Bhat TA, Kalathil SG, Bogner PN, Miller A, Lehmann P V, Thatcher TH, Phipps RP, Sime PJ, Thanavala Y. Secondhand Smoke Induces Inflammation and Impairs Immunity to Respiratory Infections. J Immunol. 2018; 200(8):2927–2940.
28. Al-tameemi SA, Hameed NJ, Gomes KB, Abid HA. Cigarette Smoking Increases Plasma Levels of IL-6 and TNF-α. Baghdad J Biochem Appl Biol Sci. 2022;3(1).
29. Addissouky TA, El Sayed IET, Ali MMA, Wang Y, El Baz A, Elarabany N, Khalil AA. Oxidative Stress and Inflammation: elucidating Mechanisms of Smoking-Attributable Pathology for Therapeutic Targeting. Bull Natl Res Cent. 2024; 48.
30. Pramudya M, Dewi FRP, Wong RW, Anggraini DW, Winarni D, Wahyuningsih SPA. Anti-cancer Activity of an Ethanolic Extract of Red Okra Pods (Abelmoschus esculentus L. Moench) in Rats Induced by N-methyl-N-nitrosourea. Vet World. 2022; 15(5):1177–1184.
31. Mahdavi AM, Javadivala Z, Ahmadian E. Effects of Okra (Abelmoschus esculentus L) on Inflammatory Mediators: A Systematic Review of Preclinical Studies. Food Funct. 2022;21(13):3159–69.
32. Imran M, Saeed F, Hussain G, Imran A, Mehmood Z, Gondal TA, El-Ghorab A, Ahmad I, Pezzani R, Arshad MU, Bacha U, Shariarti MA, Rauf A, Muhammad N, Shah ZA, Zengin G, Islam S. Myricetin: A Comprehensive Review on its Biological Potentials. Food Sci Nutr. 2021; 9(10):5854–5868.
33. Aghababaei F, Hadidi M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals. 2023; 16(7):1020.
34. Cebeci E, Katirci E, Karhan M, Korgun ET. The Immunomodulator Effect of Stevia Rebaudiana Bertoni Mediated by TNF-α And IL-1β in Peripheral Blood in Diabeticrats. Food Sci Nutr. 2024; 12:7581–90.
35. Myint KZ, Zhou Z, Shi Q, Chen J, Dong X, Xia Y. Stevia
Polyphenols, Their Antimicrobial and Anti-Inflammatory Properties, and Inhibitory Effect on Digestive Enzymes. Molecules. 2023; 28(22):7572.
36. Peteliuk V, Rybchuk L, Bayliak M, Storey KB, Lushchak O. Natural sweetener stevia rebaudiana: Functionalities, Health Benefits and Potential Risks. Excli J. 2021; 20:1412–1430.
37. Mehmood A, Althobaiti F, Zhao L, Usman M, Chen X, Alharthi F, Soliman MM, Shah AA, Murtaza MA, Nadeem M, Ranjha MMAN, Wang C. Anti-inflammatory Potential of Stevia Residue Extract Against Uric Acid-Associated Renal Injury in Mice. J Food Biochem. 2022; 46(10):e14286
38. Wei F, Zhu H, Li N, Yu C, Song Z, Wang S, Sun Y, Zheng L, Wang G, Huang Y, Bao Y, Sun L. Stevioside Activates AMPK to Suppress Inflammation in Macrophages and Protects Mice from LPS-Induced Lethal Shock. Molecules. 2021;26(4):858.
39. Casas-Grajales S, Ramos-Tovar E, Chávez-Estrada E, Alvarez-Suarez D, Hernández-Aquino E, Reyes-Gordillo K, Cerda-Gracia-Rojas CM, Camacho J, Tsutsumi V, Lakshman MR, Muriel P. Antioxidant and Immunomodulatory activity Induced by Stevioside in Liver Damage: In vivo, in vitro and In silico Assays. Life Sci. 2019; 224:187–196.
40. Casas-Grajales S, Reyes-Gordillo K, Cerda-García-Rojas CM, Tsutsumi V, Lakshman MR, Muriel P. Rebaudioside A Administration Prevents Experimental Liver Fibrosis: An In Vivo And In Vitro Study of the Mechanisms of Action Involved. J Appl Toxicol. 2019; 39(8):1118–31.
41. Wang K, Jiang Z, Zhou Q, Tang H. The associations Between Oxidative Balance Score and Serum Klotho Level in the U.S. Population Aged 40–79 Years. Sci Rep. 2024; 14(1):1–12.
42. Shahid A, Santos SG, Lin C, Huang Y. Role of Insulin-like Growth Factor-1 Receptor in Tobacco Smoking-Associated Lung Cancer Development. Biomedicines. 2024; 12(3):563.
43. Alfaro-Arnedo E, López IP, Piñeiro-Hermida S, Canalejo M, Gotera C, Sola JJ, Roncero A, Peces-Barba G, Ruiz-Marinez C, Pichel JG. IGF1R Acts as a Cancer-Promoting Factor in the Tumor Microenvironment Facilitating Lung Metastasis Implantation and Progression. Oncogene. 2022; 41(28):3625–3639.
44. Sgrò P, Ceci R, Lista M, Patrizio F, Sabatini S, Felici F, Sacheti M, Bazzuchi I, Duranti G, Di Luigi L. Quercetin Modulates IGF-I and IGF-II Levels After Eccentric Exercise-Induced Muscle-Damage: A Placebo-Controlled Study. Front Endocrinol. 2021; 12:745959.
45. Ponte LGS, Pavan ICB, Mancini MCS, Silva LGS da, Morelli APMBS, Brandemarte M, Bezerra RMN, Simabuco FM. The Hallmarks of Flavonoids in Cancer. Molecules. 2021; 26(7):2029.
46. Chen C, Na X, Wang L, Yu R. High-throughput screening identifies stevioside as a potent agent to induce apoptosis in bladder cancer cells. Biochem Pharmacol. 2022; 203:115166.