A comprehensive study on the biological activities of protein-rich earthworm (Perionyx excavatus) extracts collected in Vietnam
Main Article Content
Abstract
Earthworm extracts are increasingly recognized for their bioactive compounds and therapeutic potential. This study evaluated the bioactive properties of acetone extracts (AC1:2 and AC1:4) from Perionyx excavatus, emphasizing their potential applications. Both extracts demonstrated high protein content (70.247–71.150%), with AC1:4 showing significantly higher amino acid levels (31.697 g/100 g) compared to AC1:2 (12.727 g/100 g). Key amino acids identified included aspartic acid, glycine, alanine, leucine, tyrosine, lysine, and histidine, known for their physiological and therapeutic benefits. AC1:4 exhibited superior antioxidant activity, with half maximal inhibitory concentration (IC50) values of 1.077 ± 0.088 mg/mL and 0.892 ± 0.037 mg/mL in DPPH and ABTS assays, respectively. It also showed potent anti-inflammatory effects by inhibiting nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophages (IC50 = 0.352 ± 0.025 mg/mL). Additionally, AC1:4 demonstrated strong inhibitory activity against elastase (IC50 = 5.372 ± 0.333 mg/mL), tyrosinase (IC50 = 0.12 ± 0.013 mg/mL), and MMP-1 (IC50 = 4.885 ± 0.228 mg/mL), highlighting its potential for skincare and anti-aging applications. These findings underscore the promise of P. excavatus acetone extracts, particularly AC1:4, as a sustainable and natural source of bioactive compounds for pharmaceuticals, cosmetics, and nutraceuticals.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Medina-Sauza RM, Álvarez-Jiménez M, Delhal A, Reverchon F, Blouin M, Guerrero-Analco JA, Cerdán CR, Guevara R, Villain L, Barois I. Earthworms building up soil microbiota, a review. Front Environ Sci. 2019; 7:81.
2. Venugopal A, Chandrasekhar M, Naidu BV, Raju S. Vermicomposting in sericulture using mixed culture of earthworms (Eudrillus eugineae, Eisenia foetida and Perionyx excavatus)–A review. Agric Rev. 2010; 31(2):150–154.
3. Barik T, Gulati JML, Garnayak LM, Bastia DK. Production of vermicompost from agricultural wastes-A Review. Agric Rev. 2010; 31(3):172–183.
4. Edwards CA, Arancon NQ. The use of earthworms in organic waste management and vermiculture. In: Biology and Ecology of Earthworms. New York, NY: Springer US; 2022. 467–527 p.
5. Pierre-Louis RC, Kader MA, Desai NM, John EH. Potentiality of vermicomposting in the South Pacific island countries: A review. Agriculture. 2021; 11(9):876.
6. Singh J. Role of earthworm in sustainable agriculture. In: Sustainable food systems from agriculture to industry. Elsevier; 2018. 83–122 p.
7. Walia SS, Kaur T. Vermitechnology: History and its applications. In: Earthworms and Vermicomposting. Singapore: Springer Nature Singapore; 2024. 37–53 p.
8. Datta S, Singh J, Singh S, Singh J. Earthworms, pesticides and sustainable agriculture: a review. Environ Sci Pollut Res. 2016; 23(9):8227–8243.
9. Afreen S, Shaikh A. Therapeutic uses of earthworm–a review. Int J Adv Ayurveda, Yoga, Unani, Siddha Homeopathy. 2020; 9(1):571–580.
10. Ding S, Lin X, He S. Earthworms: A source of protein. J Food Sci Eng. 2019; 9(5):159–170.
11. Grdisa M. Therapheutic properties of earthworms. Biorem Biodiv Bioavail. 2013; 7:1–5.
12. Li W, Wang C, Sun Z. Vermipharmaceuticals and active proteins isolated from earthworms. Pedobiologia. 2011; 54:49–56.
13. Zhu Z, Deng X, Xie W, Li H, Li Y, Deng Z. Pharmacological effects of bioactive agents in earthworm extract: A comprehensive review. Anim Models and Exp Med. 2024; 7(5):653–672.
14. Mathur A, Verma SK, Bhat R, Singh SK, Prakash A, Prasad GBKS, Dua VK. Antimicrobial activity of earthworm extracts. J Chem Pharm Res. 2010; 2(4):364–370.
15. Balamurugan M, Parthasarathi K, Cooper EL, Ranganathan LS. Anti-inflammatory and anti-pyretic activities of earthworm extract—Lampito mauritii (Kinberg). J Ethnopharmacol. 2009; 121(2):330–332.
16. Mathur A, Verma SK, Singh SK, Prakash A, Prasad G, Dua VK. Anti-inflammatory activity of earthworm extracts. Int J Pharm Sci Res. 2011; 2(2):278–281.
17. Bhorgin AJ, Uma K. Antimicrobial activity of earthworm powder (Lampito mauritii). Int J Curr Microbiol App Sci. 2014; 3(1):437–443.
18. Aldarraji QM, Halimoon N, Majid NM. Antioxidant activity and total phenolic content of earthworm paste of Lumbricus rubellus (red worm) and Eudrilus eugenia (African night crawler). J Entomol Nematol. 2013; 5(3):33–37.
19. Balamurugan M, Parthasarathi K, Ranganathan LS, Cooper EL. Hypothetical mode of action of earthworm extract with hepatoprotective and antioxidant properties. J Zhejiang Univ Sci B. 2008; 9(2):141–147.
20. Stephani L, Rahayu P, Retnoningrum D, Suhartono MT, Rachmawati H, Tjandrawinata RR. Purification and proteomic analysis of potent fibrinolytic enzymes extracted from Lumbricus rubellus. Proteome Sci. 2023; 21(1):8.
21. Sara M, Ilyas F, Hasballah K, Nurjannah N, Harapan H, Mudatsir M. Lumbricus rubellus earthworm as an antibacterial: A systematic review. J Appl Pharm Sci. 2023; 13(12):79–86.
22. Hrženjak T, Popović M, Božić T, Grdisa M, Kobrehel D, Tiška-Rudman L. Fibrinolytic and anticoagulative activities from the earthworm Eisenia foetida. Comp Biochem Physiol Part B: Biochem Mol Biol. 1998; 119(4):825–832.
23. Tutar U, Karaman İ. Investigation of antibacterial properties of mucus and coelomic fluid obtained from Eisenia fetida. Cumhuriyet Sci J. 2017; 38(3):427–434.
24. Francis F, Thang PT, Lebailly P, Gaspar C, Haubruge E. Perspectives de développement de la lombriculture au Sud Vietnam. Notes fauniques de Gembloux. 2005; 58:7–10.
25. Yadav A, Garg VK. Industrial wastes and sludges management by vermicomposting. Rev Environ Sci Biotechnol. 2011; 10(3):243–276.
26. Azmi N, Hashim P, Hashim DM, Halimoon N, Majid NMN. Anti–elastase, anti–tyrosinase and matrix metalloproteinase–1 inhibitory activity of earthworm extracts as potential new anti–aging agent. Asian Pac J Trop Biomed. 2014; 4:348–352.
27. Goyal K, Singh N, Jindal S, Kaur R, Goyal A, Awasthi R. Kjeldahl method. In: Advanced Techniques of Analytical Chemistry. Bentham Science Publishers; 2022. 105–112 p.
28. Istiqomah L, Sofyan A, Damayanti E, Julendra H. Amino acid profile of earthworm and earthworm meal (Lumbricus Rubellus) for animal feedstuff. J Indones Trop Anim Agric. 2009; 34(4):253–257.
29. Dung NT, Son PH, Trinh NTN, Thao VNT, Tu BLK, Luan LQ, Thinh BB, Hai LV. Evaluation of antifungal and antioxidant activities of extracts prepared from earthworm (Perionyx excavatus) using different solvents. Izv Vuzov Prikl Him Biotehnol. 2024; 14(4):462–471.
30. Yang EJ, Yim EY, Song G, Kim GO, Hyun CG. Inhibition of nitric oxide production in lipopolysaccharide-activated RAW 264.7 macrophages by Jeju plant extracts. Interdiscip Toxicol. 2009; 2(4):245–249.
31. Tien MK, Dung NC, Hiep DM, Suong NK. The study on matrix metalloproteinase-8 inhibitory activity of Isaria cicadae and Isaria tenuipes extracts isolated in Vietnam. CTU J Sci. 2020; 56:89–94.
32. Zhenjun S, Xianchun L, Lihui S, Chunyang S. Earthworm as a potential protein resource. Ecol Food Nutr. 1997; 36(2–4):221–236.
33. Hidayat N, Utami RN, Wignyanto W. The effects of earthworm concentration and extraction time on solubility of protein. Adv Food Sci Sustain Agric Agroind Eng. 2018; 1(1):15–18.
34. Garczyńska M, Kostecka J, Pączka G, Mazur-Pączka A, Cebulak T, Butt KR. Chemical composition of earthworm (Dendrobaena veneta Rosa) biomass is suitable as an alternative protein source. Int J Environ Res Public Health. 2023; 20(4):3108.
35. Kostecka J, Garczyńska M, Pączka G, Mazur-Pączka A. Chemical composition of earthworm (Eisenia fetida Sav.) biomass and selected determinants for its production. J Ecol Eng. 2022; 23(7):169–179.
36. Rufchaei R, Hoseinifar SH, Nedaei S, Bagheri T, Ashouri G, Van Doan H. Non-specific immune responses, stress resistance and growth performance of Caspian roach (Rutilus caspicus) fed diet supplemented with earthworm (Eisenia foetida) extract. Aquaculture. 2019; 511:734275.
37. Kavle RR, Nolan PJ, Carne A, Agyei D, Morton JD, Bekhit AEDA. Earth worming—An evaluation of earthworm (Eisenia andrei) as an alternative food source. Foods. 2023; 12(10):1948.
38. Vital V, Kpogue Diane N, Apollinaire MG, Didier FE. Culture of earthworm (Eisenia fetida), production, nutritive value and utilization of its meal in diet for Parachanna obscura fingerlings reared in captivity. Int J Fish Aquat Stud. 2016; 4(5):1–5.
39. Singh J, Singh S, Vig AP. Extraction of earthworm from soil by different sampling methods: a review. Environ Dev Sustain. 2016; 18(6):1521–1539.
40. Mustafa RG, Saiqa A, Domínguez J, Jamil M, Manzoor S, Wazir S, Shaheen B, Parveen A, Khan R, Ali S, Ali NM, Jalal F, Raja SA. Therapeutic values of earthworm species extract from Azad Kashmir as anticoagulant, antibacterial, and antioxidant agents. Can J Infect Dis Med Microbiol. 2022; 2022:1–20.
41. Dewi NWS, Mahendra AN, Putra GWK, Jawi IM, Sukrama DM, Kartini NL. Ethanolic extract of the powder of red earthworm (Lumbricus rubellus) obtained from several organic farmlands in Bali, Indonesia: Analysis of total phenolic content and antioxidant capacity. Bali Med J. 2017; 6(3):80–83.
42. Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr. 2008; 48(5):430–441.
43. Ahmed AU. An overview of inflammation: mechanism and consequences. Front Biol. 2011; 6(4):274.
44. Aguayo-Cerón KA, Sánchez-Muñoz F, Gutierrez-Rojas RA, Acevedo-Villavicencio LN, Flores-Zarate AV, Huang F, Giacoman-Martinez A, Villafaña S, Romero-Nava R. Glycine: the smallest anti-inflammatory micronutrient. Int J Mol Sci. 2023; 24(14):11236.
45. Guha S, Majumder K. Structural-features of food-derived bioactive peptides with anti-inflammatory activity: A brief review. J Food Biochem. 2019; 43(1):e12531.
46. Rivera-Jiménez J, Berraquero-García C, Pérez-Gálvez R, García-Moreno PJ, Espejo-Carpio FJ, Guadix A, Guadix EM. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: Sources, structural features and modulation mechanisms. Food Funct. 2022; 13(24):12510–12540.
47. Liu W, Chen X, Li H, Zhang J, An J, Liu X. Anti-inflammatory function of plant-derived bioactive peptides: A review. Foods. 2022; 11(15):2361.
48. Heinz A. Elastases and elastokines: elastin degradation and its significance in health and disease. Crit Rev Biochem Mol Biol. 2020; 55(3):252–273.
49. Aguilar-Toalá JE, Hernández-Mendoza A, González-Córdova AF, Vallejo-Cordoba B, Liceaga AM. Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides. 2019; 122:170170.
50. Hoyt MA, Zich J, Takeuchi J, Zhang M, Govaerts C, Coffino P. Glycine–alanine repeats impair proper substrate unfolding by the proteasome. EMBO J. 2006; 25(8):1720–1729.
51. Esfandi R, Walters ME, Tsopmo A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon. 2019; 5(4):e01538.
52. Chou PY, Fasman GD. Structural and functional role of leucine residues in proteins. J Mol Biol. 1973; 74(3):263–281.
53. Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2019; 34(1):279–309.
54. Hariri R, Saeedi M, Akbarzadeh T. Naturally occurring and synthetic peptides: Efficient tyrosinase inhibitors. J Pept Sci. 2021; 27(7):e3329.
55. Solano F. Metabolism and functions of amino acids in the skin. In: Wu G, editor. Amino Acids in Nutrition and Health. Cham: Springer International Publishing; 2020. 187–199 p.
56. Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 2016; 31(sup1):177–183.
57. Gauza-Włodarczyk M, Kubisz L, Włodarczyk D. Amino acid composition in determination of collagen origin and assessment of physical factors effects. Int J Biol Macromol. 2017; 104:987–991.
58. Raman SS, Parthasarathi R, Subramanian V, Ramasami T. Role of aspartic acid in collagen structure and stability: A molecular dynamics investigation. J Phys Chem B. 2006; 110(41):20678–20685.
59. Abuine R, Rathnayake AU, Byun HG. Biological activity of peptides purified from fish skin hydrolysates. Fish Aquatic Sci. 2019; 22(1):10.
60. Auld DS. Catalytic mechanisms for metallopeptidases. In: Handbook of proteolytic enzymes. Elsevier; 2004. 268–289 p.