Network Pharmacology and Molecular Docking Studies of Ethnopharmacological Plants from Sulawesi as Antidiabetics

Main Article Content

Muhammad Sulaiman Zubair
Yonelian Yuyun
Waode Sitti Musnina
Ahmad Najib
Firzan Nainu
Muhammad Arba
Dwi Rahmi Paneo
Ersanda Nurma Praditapuspa
Saipul Maulana

Abstract

Diabetes is a degenerative disease affecting many people in Indonesia, where herbal preparations offer an alternative treatment. This study aims to identify potential antidiabetic drugs from four ethnopharmacological plants of Sulawesi (Cordia myxa L., Syzygium cumini, Syzygium malaccense, and Antidesma bunius) using network pharmacology and molecular docking approaches. Secondary metabolites in the ethanolic extracts were identified using gas chromatography-mass spectrophotometry (GC-MS), followed by analysis of potential antidiabetic targets through network pharmacology and docking studies with Molecular Operating Environment (MOE) software. Network pharmacology revealed PPARG as a potential target for C. myxa and GCG receptors for the other plants. Docking analysis showed that C. myxa compounds bind strongly to PPARG (PDB ID: 5YCP), surpassing Rosiglitazone (-7.49635 kcal/mol), with top binding energies observed for Squalane (-9.6078 kcal/mol), 2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-(all-E)- (-8.7069 kcal/mol), and Anodendroside G monoacetate (-8.0845 kcal/mol). Meanwhile, for GCG (PDB ID: 5EE7) receptor interactions, several compounds demonstrated stronger binding than MK-0893 (-5.66941 kcal/mol). A. bunius exhibited the highest GCG binding affinities from terpenoid of 2,5,7,8-Tetramethyl-2-(4,8,12-Trimethyltridecyl)-3,4-Dihydro-2h-Chromen-6-Yl Hexofuranoside (-8.8001 kcal/mol), while S. malaccense and S. cumini compounds showed moderate to strong binding energies ranging from -7.6398 to -6.5939 kcal/mol. These findings highlight the significant antidiabetic potential of C. myxa targeting PPARG and A. bunius, S.malaccense and S.cumini targeting GCG receptors, offering promising candidates for antidiabetic drug development.

Downloads

Article Details

How to Cite
Zubair, M. S., Yuyun, Y., Musnina, W. S., Najib, A., Nainu, F., Arba, M., Paneo, D. R., Praditapuspa, E. N., & Maulana, S. (2025). Network Pharmacology and Molecular Docking Studies of Ethnopharmacological Plants from Sulawesi as Antidiabetics. Tropical Journal of Natural Product Research (TJNPR), 9(3), 1123-1135. https://doi.org/10.26538/tjnpr/v9i3.30
Section
Articles

References

1. Watcharachaisoponsiri T, Sornchan P, Charoenkiatkul S, Suttisansanee U. The α-glucosidase and α-amylase inhibitory activity from different chili pepper extracts. Int Food Res J. 2016;23(4):1439–1445.

2. Baynest HW. Classification, Pathophysiology, Diagnosis and Management of Diabetes Mellitus. J Diabetes Metab. 2015;6(5):1000541: 1-10

3. DiNicolantonio JJ, Bhutani J, O’Keefe JH. Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart. 2015;2(1):e000327.

4. Najib A, Ahmad AR, Handayani V. ELISA Test on Cordia myxa L. Leaf Extract for alpha-Glucosidase Inhibitor. Pharmacogn J. 2019;11(2):358–361.

5. Najib A, Handayani V, Ahmad AR, Hamidu L, Anisa R. Chemoprofiling of active n-hexane fraction as alpha-glucosidase inhibitors from kanunang (Cordia myxa L.) leaves from enrekang south sulawesi. J Glob Pharma Technol. 2019;11(1):266–270.

6. Najib A, Handayani V, Ahmad AR, Hikmat S. Insilico screening chemical compounds α-glucosidase inhibitor from Cordia myxa L. Int J Res Pharm Sci. 2019;10(3):2054–2057.

7. Prema S, Sharma S, Kondrapu P, Kumre YM, Salim MR, Khatkar PK. Evaluation of antioxidant, antidiabetic and antihyperlipidemic activity of Syzygium cumini seeds in diabetic zebrafish model. Eur Chem Bull. 2023;12(6):2833–2839.

8. Akhtar J, Bashir F. Antidiabetic and Other Pharmacological Activities of Syzygium cumini (Black Plum or Jamun). 1st ed. CRC Press; 2023.

9. Nallappan D, Ong KC, Palanisamy UD, Chua KH, Kuppusamy UR. Myricetin derivative-rich fraction from Syzygium malaccense prevents high-fat diet-induced obesity, glucose intolerance and oxidative stress in C57BL/6J mice. Arch Physiol Biochem. 2023;129(1):186–197.

10. Tukiran T, Setiawan AR, Constat IC, Safitri FN. The Potency of Java Apple (Syzygium samarangense) AS α-Glucosidase and α-Amylase Inhibitor: An In-Silico Approach. Trop J Nat Prod Res. 2023;7(10):4124–4199.

11. Vadu S, Modi N, Prajapati M. A review on phytochemistry and traditional therapeutic benefits of Syzygium malaccense (L.). Int Assoc Biol Comput Dig. 2023;2(1):275–286.

12. Tayyeb A, Ashfaq I, Ambreen S. Mutagenic and Antimutagenic Potential of Fruit Juices of Some Medicinal Plants. In: Biotechnologies and Genetics in Plant Mutation Breeding. Apple Academic Press; 2023. p. 205–226.

13. Chowtivannakul P, Srichaikul B, Talubmook C. Hypoglycemic and Hypolipidemic Effects of Seed Extract from Antidesma bunius (L.) Spreng in Streptozotocin-induced Diabetic Rats. Pak J Biol Sci. 2016;19(5):211–218.

14. Handayani V. Chemoprofiling of active n-hexane fraction as alpha-glucosidase inhibitors from Kanunang (Cordia myxa L.) leaves from Enrekang South Sulawesi. J Glob Pharma Technol. 2022;11(11):266–270.

15. Alseekh S, Aharoni A, Brotman Y, Contrepois K, D’Auria J, Ewald J. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods. 2021;18(7):747–756.

16. Chandran U, Mehendale N, Patil S, Chaguturu R, Patwardhan B. Network Pharmacology. In: Innovative Approaches in Drug Discovery. Elsevier; 2017. p. 127–164.

17. Ekowati J, Tejo BA, Maulana S, Kusuma WA, Fatriani R, Ramadhanti NS, Norhayati N, Nofianti KA, Sulistyowaty MI, Zubair MS, Yamauchi T, Hamid IS. Potential Utilization of Phenolic Acid Compounds as Anti-Inflammatory Agents through TNF-α Convertase Inhibition Mechanisms: A

Network Pharmacology, Docking, and Molecular Dynamics Approach. ACS Omega. 2023;8(49):15350–15360.

18. Zubair MS, Anam S, Khumaidi A, Susanto Y, Hidayat M, Ridhay A. Molecular docking approach to identify potential anticancer compounds from Begonia (Begonia sp). In: New York, NY, USA; 2016. p. 0800051 - 0800057

19. Zubair MS, Alarif WM, Ghandourah MA, Anam S, Jantan I. Cytotoxic Activity of 2-O-β-glucopyranosil Cucurbitacin D from Benalu Batu (Begonia sp) Growing in Morowali, Central Sulawesi. Indones J Chem. 2020;20(4):766–778.

20.Zubair MS, Alarif WM, Ghandourah MA, Anam S. A new steroid glycoside from Begonia sp. : cytotoxic activity and docking studies. Nat Prod Res. 2021;35(13):2224–2231.

21.Olaokun OO, Zubair MS. Antidiabetic Activity, Molecular Docking, and ADMET Properties of Compounds Isolated from Bioactive Ethyl Acetate Fraction of Ficus lutea Leaf Extract. Molecules. 2023;28(23):7717-7736.

22. Zubair MS, Maulana S, Widodo A, Pitopang R, Arba M, Hariono M. GC-MS, LC-MS/MS, Docking and Molecular Dynamics Approaches to Identify Potential SARS-CoV-2 3-Chymotrypsin-like Protease Inhibitors from Zingiber officinale Roscoe. Molecules. 2021;26(17):5230

23. Okafor CE, Ijoma IK, Igboamalu CA, Ezebalu CE, Eze CF, Osita-Chikeze JC, Uzor CE, Ekwuekwe AL. Secondary metabolites, spectra characterization, and antioxidant correlation analysis of the polar and nonpolar extracts of Bryophyllum pinnatum (Lam) Oken. BioTechnologia. 2024;105(2):121–136.

24. Jia C, Pan X, Wang B, Wang P, Wang Y, Chen R. Mechanism Prediction of Astragalus membranaceus against Cisplatin-Induced Kidney Damage by Network Pharmacology and Molecular Docking. Evid Based Complement Alternat Med. 2021;7 (1) :1–15.

25. Zhou P, Zhou R, Min Y, An LP, Wang F, Du QY. Network Pharmacology and Molecular Docking Analysis on Pharmacological Mechanisms of Astragalus membranaceus in the Treatment of Gastric Ulcer. Seidel V, editor. Evid Based Complement Alternat Med. 2022;2022:1–11.

26. Li F, Duan J, Zhao M, Huang S, Mu F, Su J, Liu K, Pan Y, Lu X, Li J, Wei P, Xi M, Wen A. A network pharmacology approach to reveal the protective mechanism of Salvia miltiorrhiza-Dalbergia odorifera coupled-herbs on coronary heart disease. Sci Rep. 2019;9(1):19343-19353.

27. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14(1):128.

28. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47(W1):W199–205.

29. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.

30. Ijoma IK, Okafor CE, Ajiwe VI. Computational Studies of 5-methoxypsolaren as Potential Deoxyhemoglobin S Polymerization Inhibitor. Trop J Nat Prod Res. 2024;8(10): 8835-8841

31. Lee S, Oh DG, Singh D, Lee JS, Lee S, Lee CH. Exploring the metabolomic diversity of plant species across spatial (leaf and stem) components and phylogenic groups. BMC Plant Biol. 2020;20(1):39.

32. Vazquez A. Protein interaction networks. Boca Raton: CRC Press; 2011. Chapter 8. PMID 21882453

33. Ochieng PJ, Hussain A, Dombi J, Krész M. An efficient weighted network centrality approach for exploring mechanisms of action of the Ruellia herbal formula for treating rheumatoid arthritis. Appl Netw Sci. 2023;8(1):53-82.

34. Wimalagunasekara SS, Weeraman JWJK, Tirimanne S, Fernando PC. Protein-protein interaction (PPI) network analysis reveals important hub proteins and sub-network modules for root development in rice (Oryza sativa). J Genet Eng Biotechnol. 2023;21(1):69-84

35. Zhang L, Shi X, Huang Z, Mao J, Mei W, Ding L, Zhang L, Xing R, Wang P. Network pharmacology approach to uncover the mechanism governing the effect of Radix Achyranthis Bidentatae on osteoarthritis. BMC Complement Med Ther. 2020;20(1):121.

36. Yao H, Xin D, Zhan Z, Li Z. Network pharmacology-based approach to comparatively predict the active ingredients and molecular targets of compound Xueshuantong capsule and Hexuemingmu tablet in the treatment of proliferative diabetic retinopathy. Evid Based Complement Alternat Med. 2021;2021(1):6642600.

37. Jacob B, Narendhirakannan RT. Role of medicinal plants in the management of diabetes mellitus: a review. 3 Biotech. 2019;9(1):4.

38. Alam S, Sarker MMR, Sultana TN, Chowdhury MNR, Rashid MA, Chaity NI, Zhao C, Xiao J, Hafez EE, Khan SA, Mohamed IN. Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Front Endocrinol (Lausanne). 2022;13:800714.

39. Chang CLT, Lin Y, Bartolome AP, Chen YC, Chiu SC, Yang WC. Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds. Evid Based Complement Alternat Med. 2013;2013:378657.

40. Li L, Pan Z, Yang S, Shan W, Yang Y. Identification of key gene pathways and coexpression networks of islets in human type 2 diabetes. Diabetes Metab Syndr Obes. 2018;11:553–563.

41. Cui H, Hu D, Xu J, Zhao S, Song Y, Qin G, Liu Y. Identification of hub genes associated with diabetic cardiomyopathy using integrated bioinformatics analysis. Sci Rep. 2024;14(1):15324.

42. Zhong H, Duan BH, Du FM, Wang WM, Qiao H. Identification of key genes, biological functions, and pathways of empagliflozin by network pharmacology and its significance in the treatment of type 2 diabetes mellitus. Ann Transl Med. 2023;11(2):123.

43. Chen Chen, Minghui Han, Weimei Zhang, Jing Cui, Nan Cui, Lianzheng Cao, Guoqiang Luo, Jianping Sun. Identification of key genes and pathways in type 2 diabetes mellitus and vitamin C metabolism through bioinformatics analysis. Asia Pac J Clin Nutr. 2021;30(4):715–729.

44.Richter B, Bandeira-Echtler E, Bergerhoff K, Clar C, Ebrahim SH. Rosiglitazone for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2007;(3):CD006063.

45. Xiu B, Xing A, Li S. The forgotten type 2 diabetes mellitus medicine: rosiglitazone. Diabetol Int. 2022;13(1):49–65.

46. Roy S, Ghosh A, Majie A, Karmakar V, Das S, Dinda SC, Bose A, Gorain B. Terpenoids as potential phytoconstituent in the treatment of diabetes: From preclinical to clinical advancement. Phytomedicine. 2024;129 (5):155638.

47. Putta S, Yarla NS, Kilari EK, Surekha C, Aliev G, Divakara MB, Santosh MS, Ramu R, Zameer F, Mn NP, Chintala R, Rao PV, Shiralgi Y, Dhananjaya BL. Therapeutic Potentials of Triterpenes in Diabetes and its Associated Complications. Curr Top Med Chem. 2016;16(23):2532–2542.

48. Song BR, Alam MB, Lee SH. Terpenoid-Rich Extract of Dillenia indica L. Bark Displays Antidiabetic Action in Insulin-Resistant C2C12 Cells and STZ-Induced Diabetic Mice by Attenuation of Oxidative Stress. Antioxidants (Basel). 2022;11(7):1227.