Effect of Papaya Peel Nata Oral Administration on the Blood Glucose Level in Male Rats with Streptozotocin-Induced Diabetic Mellitus
Main Article Content
Abstract
Papaya peel, an often-discarded by-product of papaya fruit processing, is rich in fiber, making it a potential raw material for producing nata - a gel-like fermented product with potential health benefits. This study aimed to develop nata product from papaya peel and evaluate its effect on blood glucose in diabetic rats. Crude fiber content and antioxidant capacity of papaya peel nata (PPN) were determined. Twenty-five male Wistar rats were divided into five groups of 5 rats each: negative control (administered 2 mL distilled water), positive control (administered 0.6 g cellulose), and the treatment groups - administered PPN at doses of 0.5 g (PPN1), 0.6 g (PPN2), and 0.7 g (PPN3) orally once daily for four weeks. All rats were induced with a single intraperitoneal dose of 40 mg/kg of streptozotocin (STZ). Fasting blood glucose (FBG) was measured before and after STZ induction and post-treatment. Body weight, body length, Lee index, and overall health status of the rats were monitored weekly. The results showed that PPN administration led to a significant reduction in FBG after four weeks of treatment. Body weight recovery and minimal muscle mass loss (as indicated by Lee index) were also observed, particularly in the PPN1 group. PPN exhibited good antioxidant activity, and contained high crude fiber (2.08%), which may have contributed to its blood glucose-lowering effect by increasing food viscosity, thereby reducing appetite and delay the absorption of nutrients, including glucose. These findings support the potential for use of PPN as supportive intervention in diabetes management.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Medina JDLC, Gutierrez GV, Garcia HS. Papaya: Post-Harvest Compendium. Technological Institute of Veracruz (ITV). Food and Agriculture Organization of the United Nations; 2003. 71 p. US Department of Agriculture. Papayas, Raw. United States; 2018.
Pathak PD, Mandavgane SA, Kulkarni BD. Waste to Wealth: A Case Study of Papaya Peel. Waste Biomass Valorization. 2019; 10:1755-1766. Doi:10.1007/s12649-017-0181-x
Yustisia I, Syam TS, Kadir S. Durian Seed-derived Nata de durio: A Novel Potential Dietary Fiber for Intestinal Health and Constipation. Trop J Nat Prod Res. 2024; 8(4):6918-6923.
Oliveira ID, Heleno S, Carocho M, Santos-Buelga C, Ferreira ICFR, Barros L. Nutrition Profile of Papaya Peels, Pulp, and Seeds (Carica papaya L.). In: 5th International Symposium on Phytochemicals in Medicine and Food; Nanchang, China. 2021.
Akintunde AO, Kolu P, Akintunde IA, Adewole SA, Akinboye OE, Afodu OJ, Ndubuisi-Ogbonna LC, Shobo BA. Evaluation of the Nutritive Values of Carica papaya Fruit Peels as A Potential Ingredient in Livestock Nutrition. Anim. Prod. 2022; 24(2):104-113.
Tallei TE, Marfuah S, Abas AH, Abram AADP, Pasappa N, Anggini PS, Soegoto AS, Wali F, Emran TB. Nata as a Source of Dietary Fiber with Numerous Health Benefits. J Adv Biotechnol Exp Ther. 2022; 5(1):189-197. Doi:10.5455/jabet.2022.d107
Purwandi S, Yuwono M, Hendradi E. Isolation and Characterization of Cellulose from Siwalan (Borassus flabellifer) Fruit Peel Fiber. Trop J Nat Prod Res. 2022; 6(4):480-483.
Anggreani N, Jais A, Murcitro BG, Maulidia A, Safitri ED. Optimization of Glucose and Nitrogen Concentrations in Nata de citrus Culture System from Calamansi Orange Juice. Indonesian Food Sci. and Technol. J. 2020; 4(1):6-10. Doi:10.22437/ifstj.v4i1.10707
International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Belgium; 2021. 141 p.
He Y, Wang B, Wen L, Wang F, Yu H, Chen D, Su X, Zhang C. Effect of Dietary Fiber on Human Health. Food Sci. Hum. Wellness. 2022; 11:1-10. Doi:10.1016/j.fshw.2021.07.001
Indonesian Ministry of Health, Basic Health Research 2018. Jakarta: Publishing Institution of Health Research and Development Agency; 2019.
Nishida C, Uauy R, Kumanyika S, Shetty P. The Joint WHO/FAO Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases: Process, Product and Policy Implications. Public Health Nutr. 2004; 7(1A):245-250. Doi:10.1079/PHN2003592
Mogos T, Dondoi C, Iacobini AE. A Review of Dietary Fiber in the Diabetic Diet. Rom J Diabetes Nutr Metab Dis. 2017; 24(2):161-164. Doi:10.1515/rjdnmd-2017-0021
Okouchi R, Shuang E, Yamamoto K, Ota T, Seki K, Imai M, Ota R, Asayama Y, Nakashima A, Suzuki K, Tsuduki T. Simultaneous Intake of Euglena gracilis and Vegetables Exerts Synergistic Anti-Obesity and Anti-Inflammatory Effects by Modulating the Gut Microbiota in Diet-Induced Obese Mice. Nutrients. 2019; 11(1):1-16. Doi:10.3390/nu11010204
Galisteo M, Duarte J, Zarzuelo. Effects of Dietary Fibers on Disturbances Clustered in Metabolic Syndrome. J Nutr Biochem. 2008; 19(2):71-84. doi:10.1016/j.jnutbio.2007.02.009
Grover GJ, Koetzner L, Wicks J, Gahler RJ, Lyon MR, Reimer RA, Wood S. Effect of the Soluble Fiber Complex PolyGlycopleX (PGX) on Glycemic Control, Insulin Secretion, and GLP-1 Levels in Zucker Diabetic Rats. Life Sci. 2010; 88:392-399. Doi:10.1016/j.lfs.2010.11.014
Kitano Y, Murazumi K, Duan J, Kurose K, Korbayashi S, Sugawara T, Hirata T. Effect of Dietary Porphyran from the Red Alga, Porphyra yezoenis on Glucose Metabolism in Diabetic KK-Ay Mice. J Nutr Sci Vitaminol. 2012; 58:14-19.
Grover GJ, Koetzner L, Wicks J, Gahler RJ, Lyon MR, Reimer RA, Wood S. Effect of the Soluble Fiber Complex PolyGlycopleX® on Glucose Homeostasis and Body Weight in Young Zucker Diabetic Rats. Front Pharmacol. 2011; 2:1-10.
Grover GJ, Koetzner L, Wicks J, Gahler RJ, Lyon MR, Reimer RA, Wood S. Effect of the Soluble Fiber Complex PolyGlycopleX® (PGX®) on Glycemic Control, Insulin Secretion, and GLP-1 Levels in Zucker Diabetic Rats. Life Sci. 2011; 88:392-399.
Fajarwati I, Solihin DD, Wrediayti T, Batubarasa I. Self-recovery in Diabetic Sprague Dawley Rats Induced by Intraperitoneal Alloxan and Streptozotocin. Heliyon. 2023; 9:1-7. Doi:10.1016/j.heliyon.2023.e15533
Laurence DR and Bacharach AL. Evaluation of Drug Activities Pharmacometric. London: Academic Press; 1964.
Rohmah S, Munandar A, Surilayani D. Characteristics of Nata de Seaweed with Different Concentrations of Gracilaria sp. Media Teknol. Has. Perikan. 2022; 10(3):133-142. Doi:10.35800/mthp.10.3.2022.41413
Darmayanti PG, Mustofa A, Karyamtina M. Antioxidant Activity of Nata with Jackfruit (Artocarpus heterophyllus Lam) and Purple Cabbage (Brassica oleracea L var. Capitata) Substrates. J. Teknol. Pertan. 2023; 12(2):124-134. Doi:10.30598/jagritekno.2023.12.2.124
Firdaus F, Rimbawan R, Marliyati SA, Roosita K. Streptozotocin-Sucrose-Induced Diabetes Rat Model for Gestational Diabetes Mellitus Research Approach. Media Kesehat. Masy. Indonesia. 2016; 12(1):29-34. Doi:10.30597/mkmi.v12i1.550
Novelli ELB, Diniz YS, Galhardi CM, Ebaid GMX, Rodrigues HG, Mani F, Fernandes AAH, Cicogna AC, Filho JLVBN. Anthropometrical Parameters and Markers of Obesity in Rats. Lab Anim. 2007; 41(1):111-119. Doi:10.1258/002367707779399518
Burkholder T, Foltz C, Karisson E, Linton CG, Smith JM. Health Evaluation of Experimental Laboratory Mice. Curr Protoc Mouse Biol. 2012; 2:145-165. Doi:10.1002/9780470942390.mo110217
Putranto K and Taofik A. Addition of Bean Sprout Extract in Nata de coco Media. J. Kaji. Islam Sains dan Teknol. 2017; 10(2):138-149.
Rose D, Ardiningsih P, Idiawati N. Characteristics of Nata de Jackfruit (Artocarpus heterophyllus) with Variations in Concentration of Acetobacter xylinum Starter. J. Kimia Khatulistiwa. 2018; 7(4):1-7.
Putri SNY, Syahrani WF, Utami CVB, Safitri DR, Arum ZN, Prihastari ZS, Sari AR. The Effect of Microorganisms, Raw Materials, and Incubation Time on Nata Characteristics. J. Teknol. Has. Pertan. 2021; 14(1):62-74. Doi:10.20961/jthp.v14i1.47654
Rachmawati NA, Haryati S, Munandar A. Characteristics of Nata de seaweed with Different Concentrations of Acetobacter xylinum Bacteria. J. Perikan. dan Kelaut. 2017; 7(2):112-124.
Tubagus R and Fizriani A. Physical and Chemical Characteristics of Nata de milko from Substandard Milk with Variations in C/N Ratio Concentration. Indonesian J. of Agric. and Food Res. 2021; 2(1):1–20.
Lusi P and Nurmiati. Effect of Sugar Doses and Addition of Black Tea Extract on Fermentation and Production of Nata de coco. Metamorfosa: J. of Biol. Sci. 2017; 4(1):126–131. Doi:10.24843/metamorfosa.2017.v04.i01.p19.
Pavithra CS, Devi SS, Jessie SW, Rani CVD. Nutritional Properties of Papaya Peel. The Pharma Innov. J. 2017; 6(7):170–173.
Tampubolon AG, Siagian A, Ardiani F. Test of Acceptability and Nutrient Content of Dodol with Addition of Purple Eggplant (Solanum melongena)
and Papaya Peel (Carica papaya L.). The University Institutional Repository of Sumatera Utara University. 2018; 1–10 p.
Gunawan A, Karyantina M, Mustofa A. Characteristics of Nata de Guava Peels With Variation of Concentration of Guava (Psidium guajava) Peels and Fermentation Time. J Ilm. Teknol. dan Ind. Pangan UNISRI. 2021; 6(2):25–37. Doi:10.33061/jitipari.v6i2.5150.
Nur’aini H and Sari ER. Quality Identification of Dragon Fruit Peel (Hylocereus undatus) Nata with Sucrose Concentration Variation. In: International Seminar on Promoting Local Resources for Food and Health; Bengkulu, Indonesia. 2015; 367 – 371 p.
Rahayu RD, Agistine D, Arlianti L. Production of Nata de Pina from Pineapple Peel Waste (Ananas comosus L. Merr) with Nitrogen Source from Peanut Sprout Extract. J. Pendidik. dan Aplikasi Ind. 2023; 10(1):55–62.
Putriana I and Aminah S. Physical Quality, Dietary Fiber and Organoleptic Characteristics from Nata de Cassava Based on Time of Fermentation. J. Pangan dan Gizi. 2013; 4(1):29–38. Doi:10.26714/jpg.4.1.2013.%25p.
Guntur GZ, Darmawati, Mahadi I. Making Nata de pina from Waste of Pineapple Substrates Based on Long Fermentation as a Learning Module Design in Biology of Senior High School. Riau, Indonesia. 2016; 10 p.
Bartisz IS and Bartisz G. Evaluation of the Antioxidant Capacity of Food Products: Methods, Applications, and Limitations. Processes. 2022; 10:1–23.
Gaye AA, Cisse OIK, Ndiaye B, Ayessou NC, Cisse M, Diop CM. Evaluation of Phenolic Content and Antioxidant Activity of Aqueous Extracts of Three Carica papaya Varieties Cultivated in Senegal. Food and Nutr. Sci. 2019; 10:276–289.
Vasundra and Dutta U. Antimicrobial and Antioxidant Properties of Peel and Seed Extract of Carica papaya L. Indian J. of Exp. Biol. 2024; 62:660–669.
Islam MS and Wilson RD. Experimentally Induced Rodent Models of Type 2 Diabetes. Anim Models in Diabetes Res. 2012; 933:161–174. Doi:10.1007/978-1-62703-068-7_10.
Lenzen S. The Mechanism of Alloxan-and Streptozotocin-Induced Diabetes. Diabetologia. 2008; 51(2):216–226. Doi:10.1007/s00125-007-0886-7.
Mostavinia A, Amini A, Ghorishi SK, Puriran R, Bayat M. The Effects of Dosage and the Routes of Administration of Streptozotocin and Alloxan on Induction Rate of Type 1 Diabetes Mellitus and Mortality Rate in Rats. Lab Anim Res. 2016; 32(3):160–165. Doi:10.5625/lar.2016.32.3.160.
Adetayo MO, Adetayo AM, Adetunji OA, Osiwoga TFC, Mordi AC. Hypoglycemic, Hypolipidemic and Hepatoprotective Activities of Ripe and Unripe Carica papaya Methanol Extracts in Streptozotocin-Induced Diabetic Male Rats. Trop J Nat Prod Res. 2021; 5(9):1673–1676.
Cahyawardani C, Sulistyowati E, Widajati E. Carbohydrate and Fiber Intake on Fasting Blood Glucose Levels in Patients with Type 2 Diabetes Mellitus Following Brown-Rice Diet Intervention. Indonesian J of Hum. Nutr. 2023; 10(1):1–11. Doi:10.21776/ub.ijhn.2023.010.01.1.
Brockman DA, Chen X, Gallaher DD. Hydroxypropyl Methylcellulose, a Viscous Soluble Fiber, Reduces Insulin Resistance and Decreases Fatty Liver in Zucker Diabetic Fatty Rats. Nutr Metab (Lond). 2012; 9(1):1–12. Doi:10.1186/1743-7075-9-100.
Sindurani JA and Rajamohan T. Effects of Different Levels of Coconut Fiber on Blood Glucose, Serum Insulin, and Minerals in Rats. Indian J Physiol Pharmacol. 2000; 44(1):97–100.
Pournaghi P, Sadrkhanlou R, Hasanzadeh S, Foroughi A. An Investigation on Body Weights, Blood Glucose Levels and Pituitary-Gonadal Axis Hormones in Diabetic and Metformin-Treated Diabetic Female Rats. Vet Res Forum. 2012; 3(2):79–84.
Kim MJ and Ha BJ. Antihyperglycemic and Antihyperlipidemic Effects of Fermented Rhynchosia nulubilis in Alloxan-induced Diabetic Rats. Toxicol Res. 2013; 29(1):15–19. Doi:10.5487/TR.2013.29.1.015.
Cruz PL, Moraes-Silva IC, Ribeiro AA, Machi JF, Melo MTD, Santos FD, Silva MBD, Strunz CMC, Caldini EG, Irigoyen MC. Nicotinamide Attenuates Streptozotocin-Induced Diabetes Complications and Increases Survival Rate in Rats: Role of Autonomic Nervous System. BMC Endocr Disord. 2021; 21:1–10. Doi:10.1186/s12902-021-00795-6.
Borkoles E, Krastins D, Pols JCVD, Sims P, Polman R. Short-Term Effect of Additional Daily Dietary Fiber Intake on Appetite, Satiety, Gastrointestinal Comfort, Acceptability, and Feasibility. Nutrients. 2022; 14(19):1–15. Doi:10.3390/nu14194214.
Eswaran S, Muir J, Chey WD. Fiber and Functional Gastrointestinal Disorders. Am J Gastroenterol. 2013; 108(5):718–727. Doi:10.1038/ajg.2013.63.