The Effect of Avocado Seed for Socket Healing after Tooth Extraction on Diabetic Condition (In Silico and In Vivo Research)
Main Article Content
Abstract
Approximately 2.5% of patients with diabetic complications are experiencing delayed post-extraction healing. In this context, avocado seed (Persea americana Mill) content of catechin, chlorogenic acid, procyanidine, and quinic acid compounds can reduce inflammation and increase wound healing after tooth extraction. Therefore, this research aims to explore and provide groundbreaking insights into the potential use of avocado seed compounds as natural therapeutic agents for enhancing post-extraction socket healing, particularly in diabetes mellitus (DM) patients experiencing delayed healing. In silico analysis is carried out to predict molecular interactions and therapeutic mechanisms with in vivo experimental models for validation, establishing a comprehensive understanding of the impact of avocado seed on healing pathways. Meanwhile, in vivo research examined the expression of TNF, RUNX2, and RANKL on tooth socket tissue of mice using the SPSS Mann-Whitney test (α = 0.05). Catechin, chlorogenic acid, procyanidine, and quinic acid from an avocado seed are analysed through in silico research using molecular docking. The results showed that there were significant differences in the expression of TNF-α, RUNX2, and RANKL between the control and treatment groups. This is attributed to the compounds in avocado seed, which report binding affinity with receptors in each stage of the inflammation process. According to in silico results, quinic acid reports the highest binding affinity with TNF-α, targeting anti-inflammatory activity. Procyanidin and chlorogenic acid show strong binding with RUNX2 and RANKL, targeting the stimulation of proliferation and remodeling processes, respectively.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Power DJ, Sambrook PJ, Goss AN. The Healing of Dental Extraction Sockets in Insulin-Dependent Diabetic Patients: A Prospective Controlled Observational Study. Aust Dent J. 2019;64(1):111-116. doi:10.1111/ADJ.12669
2. Gadicherla S, Smriti K, Roy S, Pentapati KC, Rajan J, Walia A. Comparison of Extraction Socket Healing in Non-Diabetic, Prediabetic, and Type 2 Diabetic Patients. Clin Cosmet Investig Dent. 2020;12:291-296. doi:10.2147/CCIDE.S264196
3. Rohmaniar PD, Rahayu RP, Narmada IB, Sa’adah N, Andriani D. Effect of Diabetes Mellitus on Each Phase of Tooth Extraction Socket Healing. Journal of International Dental and Medical Research. 2024; 17(1): 429-434.
4. De Sousa Gomes P, Daugela P, Poskevicius L, Mariano L, Fernandes MH. Molecular and Cellular Aspects of Socket Healing in the Absence and Presence of Graft Materials and Autologous Platelet Concentrates: a Focused Review. J Oral Maxillofac Res. 2019;10(3):e1. doi:10.5037/JOMR.2019.10302
5. Okolie NP, Falodun A, Davids O. Evaluation of the Antioxidant Activity of Root Extract of Pepper Fruit (Dennetia Tripetala), and It’s Potential for the Inhibition of Lipid Peroxidation. Afr J Trad Compl and Altern Med. 2014;11(3):221. doi:10.4314/AJTCAM.V11I3.31
6. Ariesanti Y, Putra Rasad ISS, Nimas M, Syabilla N. The effect of Persea americana Mill. seed extract on inflammatory cells and fibroblast formation in tooth extraction socket healing. Dent J. 2021;54(4):190-194. doi:10.20473/J.DJMKG.V54.I4.P190-194
7. Dreher ML, Davenport AJ. Hass Avocado Composition and Potential Health Effects. Crit Rev Food Sci Nutr. 2013;53(7):738-750. doi:10.1080/10408398.2011.556759
8. Wu X, Gu L, Holden J, Haytowitz DB, Gebhardt SE, Beecher G, Prior RL. Development of a database for total antioxidant capacity in foods: A preliminary study. Journal of Food Composition and Analysis. 2004;17(3-4):407-422. doi:10.1016/j.jfca.2004.03.001
9. Kristanti CD, Simanjuntak FPJ, Dewi NKPA, Tianri SV, Hendra P. Anti-inflammatory and Analgesic Activities of Avocado Seed (Persea Americana Mill.). Journal of Pharmaceutical Sciences and Community. 2017;14(2):104-111. doi:10.24071/JPSC.142858
10. Bahru TB, Tadele ZH, Ajebe EG. A Review on Avocado Seed: Functionality, Composition, Antioxidant and Antimicrobial Properties. Chemical Science International Journal. Published online July 23, 2019:1-10. doi:10.9734/csji/2019/v27i230112
11. Bangar SP, Dunno K, Dhull SB, Siroha AK, Changan S, Maqsood S, Rusu AV. Avocado seed discoveries: Chemical composition, biological properties, and industrial food applications. Food Chem X. 2022;16:100507. doi:10.1016/J.FOCHX.2022.100507
12. Segovia FJ, Indra Hidalgo G, Villasante J, Ramis X, Almajano MP. molecules Avocado Seed: A Comparative Study of Antioxidant Content and Capacity in Protecting Oil Models from Oxidation. doi:10.3390/molecules23102421
13. Setyawan HY, Sukardi S, Puriwangi CA. Phytochemicals properties of avocado seed: A review. In: IOP Conference Series: Earth and Environmental Science. Vol 733. IOP Publishing Ltd; 2021. doi:10.1088/1755-1315/733/1/012090
14. Melgar B, Dias MI, Ciric A, Sokovic M, Garcia-Castello EM, Rodriguez-Lopez AD, ... Ferreira IC. Bioactive characterization of Persea americana Mill. by-products: A rich source of inherent antioxidants. Ind Crops Prod. 2018;111:212-218. doi:10.1016/J.INDCROP.2017.10.024
15. Kim MJ, Im NK, Yu MH, Kim HJ, Lee IS. Effects of extracts from sarcocarp, peels, and seeds of avocado on osteoblast differentiation and osteoclast formation. Journal of the Korean Society of Food Science and Nutrition. 2011;40(7):919-927. doi:10.3746/jkfn.2011.40.7.919
16. Vali B, Rao LG, El-Sohemy A. Epigallocatechin-3-gallate increases the formation of mineralized bone nodules by human osteoblast-like cells. J Nutr Biochem. 2007;18(5):341-347. doi:10.1016/J.JNUTBIO.2006.06.005
17. Huang HT, Cheng TL, Lin SY, Ho CJ, Chyu JY, Yang RS, ... Shen CL. Osteoprotective Roles of Green Tea Catechins. Antioxidants. 2020;9(11):1-25. doi:10.3390/ANTIOX9111136
18. Hu B, Chen L, Chen Y, Zhang Z, Wang X, Zhou B. Cyanidin-3-glucoside Regulates Osteoblast Differentiation via the ERK1/2 Signaling Pathway. ACS Omega. 2021;6(7):4759-4766. doi:10.1021/ACSOMEGA.0C05603/ASSET/IMAGES/LARGE/AO0C05603_0007.JPEG
19. Benali T, Bakrim S, Ghchime R, Benkhaira N, El Omari N, Balahbib A, ... Bouyahya A. Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol Genet Eng Rev. Published online 2022. doi:10.1080/02648725.2022.2122303
20. Huang J, Xie M, He L, Song X, Cao T. Chlorogenic acid: a review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems. Front Pharmacol. 2023;14. doi:10.3389/FPHAR.2023.1218015
21. Tian X, Zhang J, Guo Q, Wang G, Wang H, Li Z, Dong J. Chlorogenic acid improved high glucose induced apoptosis and osteogenic differentiation in MC3T3-E1 cells through eliminating oxidative stress. Acta Poloniae Pharmaceutica - Drug Research. 2021;77(6):881-887. doi:10.32383/APPDR/130824
22. Triwardhani A, Nugraha A, Aju G, Ardani W. Molecular Docking of Marumoside, Rutin, and Quercetin in Moringa Oleifera to Bone Remodeling Biomarkers: An in-Silico Study.; 2023. http://www.jidmr.com
23. Prasesti GK, Anggadiredja K, Kurniati NF. Momordica charantia Fruit Extract on Cardiac Biomarker Serum Attenuation in Rats and its Bioactive Compound Molecular Docking Against SIRT-1 Protein. Trop J Nat Prod Res. 2023;7(1):2229-2233. doi:10.26538/TJNPR/V7I1.21
24. Xiao W, Wang Y, Pacios S, Li S, Graves DT. Cellular and Molecular Aspects of Bone Remodeling. Front Oral Biol. 2016;18:9-16. doi:10.1159/000351895
25. Udeabor SE, Heselich A, Al-Maawi S, Alqahtani AF, Sader R, Ghanaati S. Current Knowledge on the Healing of the Extraction Socket: A Narrative Review. Bioengineering. 2023;10(10):1145. doi:10.3390/BIOENGINEERING10101145
26. Jang SA, Park DW, Kwon JE, Song HS, Park B, Jeon H, ... Kang SC. Quinic acid inhibits vascular inflammation in TNF-α-stimulated vascular smooth muscle cells. Biomedicine & Pharmacotherapy. 2017;96:563-571. doi:10.1016/J.BIOPHA.2017.10.021
27. Kwak SC, Lee C, Kim JY, Oh HM, So HS, Lee MS, ... Oh J. Chlorogenic Acid Inhibits Osteoclast Differentiation and Bone Resorption by Down-Regulation of Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Nuclear Factor of Activated T Cells c1 Expression. Biol Pharm Bull. 2013;36(11):1779-1786.
28. Shen J, Zhang S, Zhang J, Wei X, Wang Z, Han B. Osteogenic mechanism of chlorogenic acid and its application in clinical practice. Front Pharmacol. 2024;15:1396354. doi:10.3389/FPHAR.2024.1396354/BIBTEX
29. Decherchi S, Cavalli A. Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation. Chem Rev. 2020;120(23):12788-12833. doi:10.1021/ACS.CHEMREV.0C00534/ASSET/IMAGES/LARGE/CR0C00534_0020.JPEG
30. Ijoma IK, Okafor CE, Ajiwe VIE. Computational Studies of 5-methoxypsolaren as Potential Deoxyhemoglobin S Polymerization Inhibitor. Trop J Nat Prod Res. 2024;8(10):8835-8841. doi:10.26538/TJNPR/V8I10.28
31. Hasanuddin S, Agustina, Gozali D, Arba M, Mustarichie R, Isrul M. In Vivo and In Silico Evaluation of Petroselinum crispum Leaf Fractions as Anti-Alopecia. Trop J Nat Prod Res. 2024;8(12):9537-9546. doi:10.26538/TJNPR/V8I12.27