A Review of the Phytochemistry, Pharmacology and Properties of Black Tea in Health
Main Article Content
Abstract
Black tea (Camellia sinensis L.) is renowned for distinct organoleptic properties attributed to the post-fermentation process. Several studies have shown that the plant contains various chemical components, including theabrownins, thearubigins, theaflavins, TPs-2, TPs-1, Kaempferol, Quercetin, Myricetin, Arginine, Alanine, and GABA. Other compounds present include Theanine, Epigallocatechin gallate (EGCG), Epigallocatechin Gallate Derivative (EGCGD), Gallocatechin, and Gallic acid. These compounds are presumable responsible for the numerous health advantages of black tea, including anti-oxidant, anti-obesity, anti-cholesterol, and anti-diabetic qualities. The plant has also attracted significant attention globally due to the diverse range of bioactive chemicals, each of which has a distinct pharmacological impact. Therefore, this review aimed to offer additional details regarding the pharmacological effects, advantages, and mechanism of action for black tea in humans.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. Rana A, Rana S, Kapoor S, Joshi R, Thakur A, Padwad YS, Kumar S. Unravelling The Comparative Metabolite Fingerprints and Therapeutic Effects of Diverse Teas. Food Biosci. 2022; 1;48:101795.
2. Yong-mei X, Fang-bin Q, Ji-kun H. Black tea markets worldwide: Are they integrated?. J Integr Agric. 2022; 1;21(2):552–565.
3. Borgohain A, Sarmah M, Konwar K, Gogoi R, Bikash Gogoi B, Khare P, Paul, RK, Handique J G, Malakar H, Deka, D, Saikia J, Karak T. Tea Pruning Litter Biochar Amendment in Soil Reduces Arsenic, Cadmium, and Chromium in Made Tea (Camellia sinensis L.) and Tea Infusion: A safe Drink For Tea Consumers. Food Chem X. 2022; 13:100255.
4. Hayat K, Iqbal H, Malik U, Bilal U, Mushtaq S. Tea and Its Consumption: Benefits and Risks. Crit Rev Food Sci Nutr. 2015; 7;55(7):939–954.
5. Chiang SH, Yang KM, Wang SY, Chen CW. Enzymatic Treatment In Black Tea Manufacturing Processing: Impact on Bioactive Compounds, Quality, and Bioactivities of Black Tea. Food Sci. Technol. 2022; 163:113560.
6. Tanaka T, Matsuo Y. Production Mechanisms of Black Tea Polyphenols. Chem Pharm Bull. 2020; 68(12):1131–1142.
7. Cui Y, Lai G, Wen M, Han Z, Zhang L. Identification of Low-Molecular-Weight Color Contributors of Black Tea Infusion by Metabolomics Analysis based on UV–visible Spectroscopy and Mass Spectrometry. Food Chem. 2022; 386:132788.
8. Zhu Y, Shao CY, Lv HP, Zhang Y, Dai WD, Guo L, Tan JF, Peng QH, Lin Z. Enantiomeric and Quantitative Analysis of Volatile Terpenoids in Different Teas (Camellia sinensis). J Chromatogr A. 2017; 1490:177–190.
9. Yang C, Zhao Y, An T, Liu Z, Jiang Y, Li Y, Dong C. Quantitative Prediction and Visualization of Key Physical and Chemical Components in Black Tea Fermentation Using Hyperspectral Imaging. Food Sci. Technol. 2021;141:110975.
10. Qu F, Zeng W, Tong X, Feng W, Chen Y, Ni D. The New Insight Into The Influence of Fermentation Temperature on Quality and Bioactivities of Black Tea. Food Sci. Technol. 2020; 1(17):108646.
11. Liao W, Li W, Liu S, Tang D, Chen Y, Wang Y, Xie Z, Huang J. Potential Prebiotic Effects of Nonabsorptive Components of Keemun and Dianhong Black Tea: an in Vitro Study. Food Sci Hum Wellness. 2022; 11(3):648–659.
12. Cho IH, Peterson DG. Chemistry of Bread Aroma: A review. Food Sci Biotechnol. 2010; 19(3):575–582.
13. Sharma C, Bhardwaj NK, Pathak P. Static Intermittent Fed-Batch Production of Bacterial Nanocellulose From Black Tea and Its Modification Using Chitosan To Develop Antibacterial Green Packaging Material. J Clean Prod. 2021; 279:123608.
14. Huang A, Jiang Z, Tao M, Wen M, Xiao Z, Zhang L, Zha M, Jiayu C, Liu Z, Zhang L. Targeted and Nontargeted Metabolomics Analysis for Determining The Effect of Storage Time on The Metabolites and Taste Quality of Keemuni. Food Chem. 2021;359:129950.
15. Miyata Y, Matsuo T, Araki K, Nakamura Y, Sagara Y, Ohba K, Sakai H. Anticancer Effects of Green Tea and the Underlying Molecular Mechanisms in Bladder Cancer. Medicines. 2018; 5(3):87.
16. Ghosh A, Mukherjee S, Roy M. Black Tea Extract Prevents Inorganic Arsenic Induced Uncontrolled Proliferation, Epithelial to Mesenchymal Transition and Induction of Metastatic Properties in HaCaT Keratinocytes-an in Vitro Study. Toxicol In Vitro. 2022; 85:105478.
17. Luo K, Ma C, Xing S, An Y, Feng J, Dang H, Huang W, Qiao L, Cheng J, Xie L .White Tea and Its Active Polyphenols Lower Cholesterol Through Reduction of Very-Low-Density Lipoprotein Production and Induction of LDLR Expression. Biomed Pharmacother. 2020; 127:110146.
18. Sharma R, Diwan B. An Update on Healthspan and Lifespan Enhancing Attributes of Tea Amidst the Emerging Understanding of Aging Biology. Hum Nutr Metab. 2022; 28: 200149.
19. Singh BN, Prateeksha, Rawat AKS, Bhagat RM, Singh BR. Black tea: Phytochemicals, Cancer Chemoprevention, and Clinical Studies. Crit Rev Food Sci Nutr. 2017;57(7):1394–1410.
20. Lv H peng, Zhang Y, Shi J, Lin Z. Phytochemical Profiles and Antioxidant Activities of Chinese Black teas Obtained by Different Processing Technologies. Food Res Int. 2017; 100:486–493.
21. Wang Q, Belščak-Cvitanović A, Durgo K, Chisti Y, Gong J, Sirisansaneeyakul S, Chisti Y. Physicochemical Properties and Biological Activities of a High-theabrownins Instant Pu-erh Tea Produced using Aspergillus Tubingensis. Food Sci. Technol. 2018 1;90:598–605.
22. Liu Y, Liu HY, Yang X, Zhu F, Wu DT, Li HB, Gan RY. Green extraction, chemical composition, and in vitro antioxidant activity of theabrownins from Kangzhuan black tea. Curr Res Food Sci. 2022; 1944–1954.
23. Jin W, Zhou L, Yan B, Yan L, Liu F, Tong P, Yu W, Dong X, Xie L, Zhang J, Xu Y, Li C, Yuan Q, Shan L, Efferth T. Theabrownin triggers DNA damage to suppress human osteosarcoma U2OS cells by activating p53 signalling pathway. J Cell Mol Med. 2018; 22(9): 4423–4436.
24. Kuang J, Zheng X, Huang F, Wang S, Li M, Zhao M, Shang C, Ge K, Li Y, Li J, Rajani C, Ma X, Zhou A, Jia W. Anti-Adipogenic Effect of Theabrownin Is Mediated by Bile Acid Alternative Synthesis via Gut Microbiota Remodeling. Metabolites. 2020; 10(11):475.
25. Nagao T, Meguro S, Hase T, Otsuka K, Komikado M, Tokimitsu I, Yamamoto K. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity (Silver Spring). 2009; 17(2):310–317.
26. Schneider C, Segre T. Green tea: potential health benefits. Am Fam Physician. 2009; 79(7):591–594.
27. Patel R, Garg R, Erande S, B. Maru G. Chemopreventive Herbal Anti-Oxidants: Current Status and Future Perspectives. J Clin Biochem Nutr. 2007; 40(2):82–91.
28. Thielecke F, Boschmann M. The potential role of green tea catechins in the prevention of the metabolic syndrome - a review. Phytochemistry. 2009; 70(1):11–24.
29. Patel R, Maru G. Polymeric black tea polyphenols induce phase II enzymes via Nrf2 in mouse liver and lungs. Free Radic Biol Med. 2008;44(11):1897–1911.
30. Popkin BM. Recent dynamics suggest selected countries catching up to US obesity. Am J Clin Nutr. 2010; 91(1):284S-288S.
31. Ju J, Lu G, Lambert JD, Yang CS. Inhibition of carcinogenesis by tea constituents. Semin Cancer Biol. 2007; 17(5):395–402.
32. Takemoto M, Takemoto H. Synthesis of Theaflavins and Their Functions. Molecules. 2018; 23(4):918.
33. Shan Z, Nisar MF, Li M, Zhang C, Wan C (Craig). Theaflavin Chemistry and Its Health Benefits. Chen L, editor. Oxid Med Cell Longev. 2021 ; 2021:1–16.
34. Tomaszewska E, Muszyński S, Dobrowolski P, Winiarska-Mieczan A, Kwiecień M, Tomczyk-Warunek A, Etjel M, Świetlica I, Gładyszewska B. White Tea is More Effective in Preservation of Bone Loss in Adult Rats Co-Exposed to Lead and Cadmium Compared to Black, Red or Green Tea. Ann Anim Sci. 2018; 18(4):937–953.
35. Maki KC, Reeves MS, Farmer M, Yasunaga K, Matsuo N, Katsuragi Y, Komikado M, Tokimitsu I, Wilder D, Jones F, Blumberg JB, Cartwright. Green tea catechin consumption enhances exercise-induced abdominal fat loss in overweight and obese adults. J Nutr. 2009; 139(2):264–270.
36. Chen H, Zhang M, Qu Z, Xie B. Compositional analysis and preliminary toxicological evaluation of a tea polysaccharide conjugate. J Agric Food Chem. 2007; 55(6):2256–2260.
37. Ahmed NA, Radwan NM, Aboul Ezz HS, Salama NA. The antioxidant effect of Green Tea Mega EGCG against electromagnetic radiation-induced oxidative stress in the hippocampus and striatum of rats. Electromagn Biol Med. 2017; 36(1):63–73.
38. Du LL, Fu QY, Xiang LP, Zheng XQ, Lu JL, Ye JH, eLi QS, Polito CA, Liang YR. Tea Polysaccharides and Their Bioactivities. Molecules. 2016; 21(11):1449.
39. Zhang L, Gui S, Wang J, Chen Q, Zeng J, Liu A, Chen Z, Lu X. Oral administration of green tea polyphenols (TP) improves ileal injury and intestinal flora disorder in mice with Salmonella typhimurium infection via resisting inflammation, enhancing antioxidant action and preserving tight junction. J Funct Foods. 2020; 64:103654.
40. Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem. 2002;
50(11):3122–3128.
41. Ross SA, Ziska DS, Zhao K, ElSohly MA. Variance of common flavonoids by brand of grapefruit juice. Fitoterapia. 2000; 71(2):154–161.
42. Castillo-Muñoz N, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I. Flavonol profiles of Vitis vinifera white grape cultivars. J Food Compost Anal. 2010; 23(7):699–705.
43. Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem. 2011;2(1):1–7.
44. Butt MS, Imran A, Sharif MK, Ahmad RS, Xiao H, Imran M, Rsool HA. Black Tea Polyphenols: A Mechanistic Treatise. Crit Rev Food Sci Nutr. 2014; 54(8):1002–1011.
45. Lin FJ, Wei XL, Liu HY, Li H. State-of-the-art review of black tea: From chemistry to health benefits. Trends Food Sci Technol. 2021; 109:126–138.
46. Selim DA, Shawky E, Abu El-Khair RM. Identification of the discriminatory chemical markers of different grades of Sri Lankan white, green and black tea (Camellia sinenesis L.) via metabolomics combined to chemometrics. J Food Compost Anal. 2022; 109:104473.
47. Li N, Chen M, Zhu HT, Zhang M, Wang D, Yang CR, Zhang YJ. Theaflavoids A-C, new flavan-3-ols with potent α-glucosidase inhibitory activity from Yunnan black tea “Jin-Ya.” Food Sci. Technol. 2022; 168:113918.
48. Leung HWC, Lin CJ, Hour MJ, Yang WH, Wang MY, Lee HZ. Kaempferol induces apoptosis in human lung non-small carcinoma cells accompanied by an induction of antioxidant enzymes. Food Chem Toxicol. 2007; 45(10):2005–2013.
49. Rajendran P, Rengarajan T, Nandakumar N, Palaniswami R, Nishigaki Y, Nishigaki I. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur J Med Chem. 2014; 86:103–112.
50. Xu Z, Yang H, Li X, Xu X, Tan H, Leng X. Dietary supplementation of kaempferol improved the growth, lipid metabolism and flesh quality of juvenile grass carp (Ctenopharyngodon idellus) based on metabolomics. Anim Feed Sci Technol. 2023; 295:115520.
51. Babaei F, Mirzababaei M, Nassiri-Asl M. Quercetin in Food: Possible Mechanisms of Its Effect on Memory. J Food Sci. 2018; 83(9):2280–2287.
52. Kochman J, Jakubczyk K, Antoniewicz J, Mruk H, Janda K. Health Benefits and Chemical Composition of Matcha Green Tea: A Review. Molecules. 2021; 26(1):85.
53. Markham KR, Gould KS, Ryan KG. Cytoplasmic accumulation of flavonoids in flower petals and its relevance to yellow flower colouration. Phytochemistry. 2001; 58(3):403–413.
54. Song X, Tan L, Wang M, Ren C, Guo C, Yang B, Ren Y, Cao Z, Li Y, Peri J. Myricetin: A review of the most recent research. Biomed Pharmacother. 2021; 134:111017.
55. Han SH, Lee JH, Woo JS, Jung GH, Jung SH, Han EJ, Kim B, Cho SD, Nam JS, Che JH, Jung JY. Myricetin induces apoptosis and autophagy in human gastric cancer cells through inhibition of the PI3K/Akt/mTOR pathway. Heliyon. 2022; 8(5).
56. Sun F, Zheng XY, Ye J, Wu TT, Wang J li, Chen W. Potential Anticancer Activity of Myricetin in Human T24 Bladder Cancer Cells Both In Vitro and In Vivo. Nutr Cancer. 2012; 64(4):599–606.
57. Hänninen O, Kaartinen K, Rauma AL, Nenonen M, Törrönen R, Häkkinen S, Adlercreutz H, Laakso J. Antioxidants in vegan diet and rheumatic disorders. Toxicol. 2000; 155(1):45–53.
58. Ahrens MJ, Thompson DL. Effect of Emulin on Blood Glucose in Type 2 Diabetics. J Med Food. 2013; 16(3):211–215.
59. Nallappan D, Chua KH, Ong KC, Chong CW, Teh CSJ, Palanisamy UD, Kuppusamy UR. Amelioration of high-fat diet-induced obesity and its associated complications by a myricetin derivative-rich fraction from Syzygium malaccense in C57BL/6J mice. Food Funct. 2021; 12(13):5876–5891.
60. Miao RR, Zhan S, Hu XT, Yuan WM, Wu LJ, Cui SX,Qu XJ. Myricetin and M10, a myricetin-3-O-β-d-lactose sodium salt, modify composition of gut microbiota in mice with ulcerative colitis. Toxicol Lett. 2021; 346: 7–15.
61. Amić D, Lucić B. Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids. Bioorg Med Chem. 2010; 18(1):28–35.
62. Naveed M, BiBi J, Kamboh AA, Suheryani I, Kakar I, Fazlani SA, Fangfang X, Kalhoro SA, Yunjuan L, Kakar MU, El-Hack MEA, Noreldin AE, Zhixiang S, LiXia C, XiaoHui Z. Pharmacological values and therapeutic properties of black tea (Camellia sinensis): A comprehensive overview.
Biomed Pharmacother. 2018; 100:521–531.
63. Ny V, Needham T, Ceacero F. Potential benefits of amino acid supplementation for cervid performance and nutritional ecology, with special focus on lysine and methionine: A review. Anim Nutr. 2022; 11:391–401.
64. Ishitobi K, Kotani H, Iida Y, Taniura T, Notsu Y, Tajima Y, Harada M. A modulatory effect of L-arginine supplementation on anticancer effects of chemoimmunotherapy in colon cancer-bearing aged mice. Int Immunopharmacol. 2022; 113:109423.
65. Unno K, Furushima D, Hamamoto S, Iguchi K, Yamada H, Morita A, Pervin M, Nakamura Y. Stress-reducing effect of cookies containing matcha green tea: essential ratio among theanine, arginine, caffeine and epigallocatechin gallate. Heliyon. 2019; 5(5):e01653.
66. Virarkar M, Alappat L, Bradford PG, Awad AB. L-Arginine and Nitric Oxide in CNS Function and Neurodegenerative Diseases. Crit Rev Food Sci Nutr. 2013; 53(11):1157–1167.
67. Gulati K, Ray A. Differential neuromodulatory role of NO in anxiety and seizures: an experimental study. Nitric Oxide. 2014; 43:55–61.
68. Unno K, Hara A, Nakagawa A, Iguchi K, Ohshio M, Morita A, Nakamura Y. Anti-stress effects of drinking green tea with lowered caffeine and enriched theanine, epigallocatechin and arginine on psychosocial stress induced adrenal hypertrophy in mice. Phytomedicine. 2016;
23(12):1365–1374.
69. Ghiffary MR, Prabowo CPS, Adidjaja JJ, Lee SY, Kim HU. Systems metabolic engineering of Corynebacterium glutamicum for the efficient production of β-alanine. Metab Eng. 2022; 74:121–129.
70. Billacura MP, Jr Lavilla C, Cripps MJ, Hanna K, Sale C, Turner MD. β-alanine scavenging of free radicals protects mitochondrial function and enhances both insulin secretion and glucose uptake in cells under metabolic stress. Adv Redox Res. 2022 ; 6:100050.
71. Liao J, Shen Q, Li R, Cao Y, Li Y, Zou Z, Ren T, Li F, Fang W, Zhe X. GABA shunt contribution to flavonoid biosynthesis and metabolism in tea plants (Camellia sinensis). Plant Physiol Biochem. 2021; 166:849–856.
72. Liao J, Wu X, Xing Z, Li Q, Duan Y, Fang W, Zhu X. γ-Aminobutyric Acid (GABA) Accumulation in Tea (Camellia sinensis L.) through the GABA Shunt and Polyamine Degradation Pathways under Anoxia. J Agric Food Chem. 2017; 65(14):3013–3018.
73. Hinton T, Jelinek HF, Viengkhou V, Johnston GA, Matthews S. Effect of GABA-Fortified Oolong Tea on Reducing Stress in a University Student Cohort. Front Nutr. 2019;6 (27): 1-8.
74. Chen BC, Hung MY, Wang HF, Yeh LJ, Pandey S, Chen RJ, Chang RL, Viswanadha VP, Lin KH, Huang CY. GABA tea attenuates cardiac apoptosis in spontaneously hypertensive rats (SHR) by enhancing PI3K/Akt-mediated survival pathway and suppressing Bax/Bak dependent apoptotic pathway. Environ Toxicol. 2018; 33(7):789–797.
75. Hinton T, Johnston GAR. GABA-enriched teas as neuro-nutraceuticals. Neurochem Int. 2020; 141:104895.
76. Kimura K, Ozeki M, Juneja LR, Ohira H. l-Theanine reduces psychological and physiological stress responses. Biol Psychol. 2007; 74(1):39–45.
77. Palva S, Palva JM. New vistas for alpha-frequency band oscillations. Trends Neurosci. 2007; 30(4):150–158.
78. Bursill CA, Abbey M, Roach PD. A green tea extract lowers plasma cholesterol by inhibiting cholesterol synthesis and upregulating the LDL receptor in the cholesterol-fed rabbit. Atherosclerosis. 2007; 193(1):86–93.
79. Dimpfel W, Kler A, Kriesl E, Lehnfeld R. Theogallin and L-theanine as active ingredients in decaffeinated green tea extract: II. Characterization in the freely moving rat by means of quantitative field potential analysis. J Pharm Pharmacol. 2007; 59(10):1397–1403.
80. Kandinov B, Giladi N, Korczyn AD. Smoking and tea consumption delay onset of Parkinson’s disease. Parkinsonism Relat Disord. 2009; 15(1):41–46.
81. Li X, Li M, Zhang T, McClements DJ, Liu X, Wu X, Liu F. Enzymatic and nonenzymatic conjugates of lactoferrin and (−)-epigallocatechin gallate: Formation, structure, functionality, and allergenicity. J Agric Food Chem. 2021; 69(22):6291-6302.
82. Wu T, Lin L, Zhang X, Wang X, Ding J. Covalent modification of soy protein hydrolysates by EGCG: Improves the emulsifying and antioxidant properties. Food Res Int. 2023; 164:112317.
83. Koch W, Kukula-Koch W, Głowniak K. Catechin Composition and Antioxidant Activity of Black Teas in Relation to Brewing Time. J AOAC Int. 2017; 100(6):1694–1699.
84. Liu J, Zhong T, Yi P, Fan C, Zhang Z, Liang G, Xu, Y, Fan Y. A new epigallocatechin gallate derivative isolated from Anhua black tea sensitizes
the chemosensitivity of gefitinib via the suppression of PI3K/mTOR and epithelial-mesenchymal transition. Fitoterapia. 2020; 143:104590.
85. Dhiman S, Mukherjee G. Gallic Acid (GA): A Multifaceted Biomolecule Transmuting the Biotechnology Era. In: Prasad R, Kumar V, Singh J, Upadhyaya CP, editors. Recent Developments in Microbial Technologies. Singapore: Springer Nature; 2021:163–202.
86. Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep. 2019; 24:e00370.
87. Behera PK, Devi S, Mittal N. Therapeutic potential of gallic acid in obesity: Considerable shift! Obes Med. 2023; 37:100473.
89. Fitzgerald KN, Hodges R, Hanes D, Stack E, Cheishvili D, Szyf M, Henkel J, Twedt MW, Giannopoulou D, Herdell J, Logan S, Bradley R. Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. Aging. 2021; 13(7):9419–9432.
90. Tanaka M, Sugama A, Sumi K, Shimizu K, Kishimoto Y, Kondo K, Iida K. Gallic acid regulates adipocyte hypertrophy and suppresses inflammatory gene expression induced by the paracrine interaction between adipocytes and macrophages in vitro and in vivo. Nutr Res. 2020; 73:58–66.
91. Pichersky E, Raguso RA. Why do plants produce so many terpenoid compounds? New Phytol. 2018; 220(3):692–702.
92. Hui X, Liu H, Tian FL, Li FF, Li H, Gao WY. Inhibition of green tea and the catechins against 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the key enzyme of the MEP terpenoid biosynthetic pathway. Fitoterapia. 2016; 113:80–84.
93. Chen YL, Duan J, Jiang YM, Shi J, Peng L, Xue S, Kakuda Y. Production, Quality, and Biological Effects of Oolong Tea (Camellia sinensis). Food Rev Int. 2010; 27(1):1–15.
94. Huang CN, Lim X, Ong L, Lim C, Chen X, Zhang C. Mediating oxidative stress enhances α-ionone biosynthesis and strain robustness during process scaling up. Microb Cell Fact. 2022; 21(1):246.
95. Tong T, Park J, Moon Y, Kang W, Park T. α-Ionone Protects Against UVB-Induced Photoaging in Human Dermal Fibroblasts. Molecules. 2019; 24(9):1804.
96. Ansari M, Emami S. β-Ionone and its analogs as promising anticancer agents. Eur J Med Chem. 2016; 123:141–154.
97. Wang J, Zhao M, Gao T, Feng Y, Wang F, Pan Y, Jin J, Jing T, Lu M, Zhang M, Guo D, Wan X, Schwab W, Song C. Promoter and coding sequence diversity of CsCCD1 may contribute to the differential accumulation of floral β-ionone in fresh tea (Camellia sinensis) leaves. Hortic Plant J. 2022.
98. Xiao Y, Tan H, Huang H, Yu J, Zeng L, Liao Y, Wu P, Yang Z. Light synergistically promotes the tea green leafhopper infestation-induced accumulation of linalool oxides and their glucosides in tea (Camellia sinensis). Food Chem. 2022; 394:133460.
99. Liang T, Huo G, Chen L, Ding L, Wu J, Zhang J, Wang R. Antibacterial activity and metabolomic analysis of linalool against bovine mastitis pathogen Streptococcus agalactiae. Life Sci. 2023 Jan 15;313:121299.
100. Chadha J, Ravi, Singh J, Harjai K. α-Terpineol synergizes with gentamicin to rescue Caenorhabditis elegans from Pseudomonas aeruginosa infection by attenuating quorum sensing-regulated virulence. Life Sci. 2023; 313:121267.
101. Sayar NA, Durmaz Şam S, Pinar O, Serper D, Sarıyar Akbulut B, Kazan D, Sayar AA. Techno-economic analysis of caffeine and catechins production from black tea waste. Food Bioprod. Process.. 2019;118:1–12.
102. Gao X, Xie Q, Kong P, Liu L, Sun S, Xiong B, Huang B, Yan L, Sheng J, Xiang H. Polyphenol- and Caffeine-Rich Postfermented Pu-erh Tea Improves Diet-Induced Metabolic Syndrome by Remodeling Intestinal Homeostasis in Mice. Infect. Immun. 2017; 86(1):e00601-17.
103. Baek GH, Yang SW, Yun CI, Lee JG, Kim YJ. Determination of methylxanthine contents and risk characterisation for various types of tea in Korea. Food Control. 2022; 132:108543.
104. Huang F, Zheng X, Ma X, Jiang R, Zhou W, Zhou S, Zhang Y, Lei S, Wang S, Kuang J, Han X, Wei M, You Y, Li M, Li Y, Liang D, Liu J, Chen T, Yan C, Wei R, Rajani C, Shen C, Xie G, Bian Z, Li H, Zhao A, Jia W. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat Commun. 2019; 10(1):4971.
105. Jensen GS, Beaman JL, He Y, Guo Z, Sun H. Reduction of body fat and improved lipid profile associated with daily consumption of a Puer tea extract in a hyperlipidemic population: a randomized placebo-controlled trial. CIA. 2016; 11:367–376.
106. Takeda R, Furuno Y, Imai S, Ide Y, Wu D, Yan K. Effect of Powdered Beverages Containing Pu-erh Tea Extract on Postprandial Blood Glucose Levels. Funct. Foods Health Dis. 2019; 9(8):532–542.
107. Xiong LG, Pan LY, Gong YS, Huang JA, Liu ZH. Fuzhuan Tea protects Caenorhabditis elegans from glucose and advanced glycation end products via distinct pathways. J Funct Foods. 2019; 59:148–155.
108. Huang X, Yao W, Pang J. Carbonation Resistance Performance and Micro-Structure Analysis of Glazed Hollow Bead Insulation Concrete. Infrastructures. 2019; 4(4):63.
109. Su K, Mao X, Zhang X. Glucose-lowering activity of black tea protein extract by modulating spleen–brain axis of diabetic mice. Br J Nutr. 2021; 126(7):961–969.
110. Xie Z, Bai Y, Chen G, Rui Y, Chen D, Sun Y, Zeng X, Liu Z. Modulation of gut homeostasis by exopolysaccharides from Aspergillus cristatus (MK346334), a strain of fungus isolated from Fuzhuan brick tea, contributes to immunomodulatory activity in cyclophosphamide-treated mice.
Food Funct. 2020; 11(12):10397–10412.
111. Glisan SL, Grove KA, Yennawar NH, Lambert JD. Inhibition of pancreatic lipase by black tea theaflavins: Comparative enzymology and in silico modeling studies. Food Chem. 2017; 216:296–300.
112. Zhang X, Wu Q, Zhao Y, Aimy A, Yang X. Consumption of post-fermented Jing-Wei Fuzhuan brick tea alleviates liver dysfunction and intestinal microbiota dysbiosis in high fructose diet-fed mice. RSC Adv. 2019; 9(30):17501–17513.
113. Cai X, Hayashi S, Fang C, Hao S, Wang X, Nishiguchi S, Tsutsui H, Sheng J. Pu’erh tea extract-mediated protection against hepatosteatosis and insulin resistance in mice with diet-induced obesity is associated with the induction of de novo lipogenesis in visceral adipose tissue. J Gastroenterol. 2017; 52(12):1240–1251.
114. Sun Y, Yang X, Lu X, Wang D, Zhao Y. Protective effects of Keemun black tea polysaccharides on acute carbon tetrachloride-caused oxidative hepatotoxicity in mice. Food and Chemical Toxicology. 2013; 58:184–192.
115. Yang J, Zhou W, Gu Y, Dai J, Li X, Tai P, Li Y, Ma X , Zhang Y. Protective effect of Pu-erh tea extracts against ethanol-induced gastric mucosal damage in rats. Biomed Rep. 2018; 8(4):335–342.
116. Naliyadhara N, Kumar A, Kumar Gangwar S, Nair Devanarayanan T, Hegde M, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara A. Interplay of dietary antioxidants and gut microbiome in human health: What has been learnt thus far? J Funct Foods. 2023; 100:105365.
117. Liu D. Effect of Fuzhuan brick-tea addition on the quality and antioxidant activity of skimmed set-type yoghurt. Int J Dairy Technol. 2018; 71:22–33.
118. Singh BN, Rawat AKS, Bhagat RM, Singh BR. Black tea: Phytochemicals, cancer chemoprevention, and clinical studies. Crit Rev Food Sci Nutr. 2017; 57(7):1394–1410.
119. Anderson LN, Sandhu R, Keown-Stoneman CDG, De Rubeis V, Borkhoff CM, Carsley S, Maguire JL, Birken CS. Latent class analysis of obesity-related characteristics and associations with body mass index among young children. Obes Sci Pract. 2020; 6(4):390–400.
120. Kuang J, Zheng X, Huang F, Wang S, Li M, Zhao M, Sang C, Ge K, Li Y, Li J, Rajani C, Ma X, Zhou S, Zhao A, Jia W. Anti-Adipogenic Effect of Theabrownin Is Mediated by Bile Acid Alternative Synthesis via Gut Microbiota Remodeling. Metabolites. 2020; 10(11):475.
121. Pan H, Gao Y, Tu Y. Mechanisms of body weight reduction by black tea polyphenols. Molecules. 2016; 21(12): 1659.
122. Sapra A, Bhandari P. Diabetes Mellitus. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
123. Sasongko H, Rohman A, Nurrochmad A, Nugroho AE. Biochemical And Triglyceride-Glucose Index (Tyg) Profile In High Doses Streptozotocin-Nicotinamide Produce Diabetes Mellitus In Rats Model. Trop J Nat Prod Res. 2024; 8(6):7499 -7503.
124. Wang X, Liu Q, Zhu H, Wang H, Kang J, Shen Z, Chen R. Flavanols from the Camellia sinensis var. assamica and their hypoglycemic and hypolipidemic activities. Acta Pharm Sin B. 2017; 7(3):342–346.
125. Wang Y, Zhang M, Zhang Z, Lu H, Gao X, Yue P. High-theabrownins instant black tea product by Aspergillus niger via submerged fermentation: α-glucosidase and pancreatic lipase inhibition and antioxidant activity. J Sci Food Agric. 2017; 97(15):5100–5106.
126. Liu B, Yang T, Zeng L, Shi L, Li Y, Xia Z, Xuping Xia, Qinlu Lin, Feijun Luo. Crude extract of Fuzhuan brick tea ameliorates DSS-induced colitis in mice. Int J Food Sci Technol. 2016; 51(12):2574–2582.
127. Abeywickrama KRW, Ratnasooriya WD, Amarakoon AMT. Oral hypoglycaemic, antihyperglycaemic and antidiabetic activities of Sri Lankan Broken Orange Pekoe Fannings (BOPF) grade black tea (Camellia sinensis L.) in rats. J Ethnopharmacol. 2011; 135(2):278–86.
128. Chen C, Wu S, Li Y, Huang Y, Yang X. Effects of different acetic acid bacteria strains on the bioactive compounds, volatile compounds and antioxidant activity of black tea vinegar. Food Sci. Technol. 2022; 171:114131.
129. Sharifi M, Futema M, Nair D, Humphries SE. Polygenic Hypercholesterolemia and Cardiovascular Disease Risk. Curr Cardiol Rep. 2019; 21(6):43.
130. Troup R, Hayes JH, Raatz SK, Thyagarajan B, Khaliq W, Jacobs DR, Key NS, Morawski BM, Kaiser D, Bank AJ, Gross M. Effect of Black Tea Intake on Blood Cholesterol Concentrations in Individuals with Mild Hypercholesterolemia: A Diet-Controlled Randomized Trial. J Acad Nutr Diet. 2015; 115(2):264-271.
131. Vaezi Z, Amini A. Familial Hypercholesterolemia. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2022.
132. Zhao Y, Asimi S, Wu K, Zheng J, Li D. Black tea consumption and serum cholesterol concentration: Systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2015; 34(4):612–619.
133. Wang J, Xiao Y, Rui X, Xu X, Guan Y, Zhang Q, Dong M. Fu brick tea extract supplementation enhanced probiotic viability and antioxidant activity of tofu under simulated gastrointestinal digestion condition. RSC Adv. 2016; 6(105):103668–103682.
134. Yang J, Li Y, Wang F, Wu C. Hepatoprotective effects of apple polyphenols on CCl4-induced acute liver damage in mice. Journal Agric Food Chem. 2010; 58(10):6525–6531.
135. Wang S, Yang L, Hou A, Liu S, Yang L, Kuang H, Jiang H. Screening hepatoprotective effective components of Lonicerae japonica Flos based on the spectrum-effect relationship and its mechanism exploring. Food Sci Hum Wellness. 2023; 12(1):283–294.
136. Chen XY, Chen HM, Liu YH, Zhang ZB, Zheng YF, Su ZQ, Zhang X, Xie JH, Liang YZ, Fu LD, Lai XP, Su ZR, Huang XQ. Protective effects of pogostone from Pogostemonis Herba against ethanol-induced gastric ulcer in rats. Fitoterapia. 2016; 241(2):193–204.
137. Taboada FF, Habib NC, B. Genta, S. Mechanisms Involved in the Antiulcer Activity of Capparis atamisquea Polar Leaves Extracts. Trop J Nat Prod Res. 2022; 6(5): 745-753
138. Uwagie-Ero EA, Nwaehujor CO, Ode JO. Investigation of Polyisoprenyl Benzophenone for Anti-ulcer Potentials in Ethanol-HCl-Induced Gastric Ulcerations in Albino Rats. Trop J Nat Prod Res. 2020; 4(6): 228-232.
139. Laine L, Takeuchi K, Tarnawski A. Gastric mucosal defense and cytoprotection: bench to bedside. Gastroenterology. 2008; 135(1):41–60.
140. Mo L, Zeng Z, Li Y, Li D, Yan C yu, Xiao S, Huang Y. Animal study of the anti-diarrhea effect and microbial diversity of black tea produced by the Yao population of Guangxi. Food Funct. 2019; 10(4):1999–2009.