In Vitro Evaluation of Stem Extracts and Essential Oils from Sawdust of Cedrus atlantica (Endl.) G. Manetti ex Carrière for their Photoprotective and Antihyperglycemic Activities
Main Article Content
Abstract
Cedrus atlantica commonly called Atlas cedar, is a prominent forest tree with numerous medicinal values. This study aimed to evaluate the photoprotective and in vitro antihyperglycemic activities of stem extracts and essential oils from sawdust of Cedrus atlantica. The extracts of C. atlantica (cyclohexane, ethyl acetate, ethanol, aqueous) and its essential oils (H0, H1, H2) were assessed for their ability to absorb ultraviolet (UV) rays (UVA and UVB) and to inhibit the enzymes α-amylase and α-glucosidase. Zinc oxide served as a positive control for UV absorption, while acarbose was used as the standard for enzyme inhibition assays. The results revealed strong photoprotective potential for C. atlantica extracts. F1 and F3 were the most effective for UVA absorption, with absorbance values of 1.968 ± 0.001 and 1.820 ± 0.017, respectively. For UVB absorption, F3 and F4 had the highest absorbance values (2.019 ± 0.010 and 2.120 ± 0.001, respectively). All extracts showed higher SPF values than zinc oxide (12.62 ± 0.02), with F1 (SPF = 20.48 ± 0.10) and F2 (SPF = 20.40 ± 0.07) showing the best results. Essential oils exhibited much lower photoprotective activity. In the antihyperglycemic assays, F2 showed the highest α-amylase inhibition (IC50 = 95.90 ± 0.02 μg/mL), while F1 exhibited the strongest α-glucosidase inhibition (IC50 = 27.50 ± 0.24 μg/mL). The essential oil fraction H1 was also active, outperforming acarbose in both assays. These findings suggest that C. atlantica has promising potential as natural sunscreen and antidiabetic therapies. Further research is needed to identify active compounds.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ahmad E, Lim S, Lamptey R, Webb DR, Davies MJ. Type 2 diabetes. Lancet. 2022; 400(10365):1803–1820. https://doi.org/10.1016/S0140-6736(22)01655-5.
Guan R, Ma N, Liu G, Wu Q, Su S, Wang J, Geng Y. Ethanol extract of propolis regulates type 2 diabetes in mice via metabolism and gut microbiota. J Ethnopharmacol. 2023; 310:116385. https://doi.org/10.1016/j.jep.2023.116385
Drioua S, Ameggouz M, Laabar A, Aasfar A, Faouzi MEA, Zahidi A, Ullah R, Alotaibi A, Bouyahya A, Zengin G, Balahbib A, Benzied H, Doukkali A. Chemical Composition and Analgesic and Antidiabetic Activity of Chenopodium ambrosioides L. Cell Biochem Funct. 2024; 42(8):e70016. https://doi.org/10.1002/cbf.70016
Drioua S, El-Guourrami O, Assouguem A, Ameggouz M, Kara M, Ullah R, Bari A, Zahidi A, Skender A, Benzied H, Doukkali A. Phytochemical study, antioxidant activity, and dermoprotective activity of Chenopodium ambrosioides (L.). Open Chem. 2024; 22(1):20230194. https://doi.org/10.1515/chem-2023-0194
Drioua S, Azalmad H, El-Guourrami O, Ameggouz M, Benkhouili FZ, Assouguem A, Kara M, Ullah R, Ali EA, Ercisli S, Fidan H, Benzied H, Doukkali A. Phytochemical screening and antioxidant activity of Vitex agnus-castus L. Open Chem. 2024; 22(1):20230190. https://doi.org/10.1515/chem-2023-0190
Drioua S, Azalmad H, El-Guourrami O, Ameggouz M, Benkhouili FZ, Assouguem A, Kara M, Ullah R, Ali E A, Ercisli S, Fidan H, Benzeid H, Doukkali A. Comprehensive phytochemical and toxicological analysis of Chenopodium ambrosioides (L.) fractions. Open Life Sci. 2024; 19(1):20220895. https://doi.org/10.1515/chem-2023-0190.
Serbouti S, Abbas Y, Soussi M, Alaoui I, Squalli W, Achiban H. Morphological Responses of Cedrus atlantica, Pinus halepensis, and Tetraclinis articulata in Different Pedoclimatic Conditions. Trop J Nat Prod Res. 2022; 6(12):1919–1924. http://www.doi.org/10.26538/tjnpr/v6i12.3
Ameggouz M, Drioua S, El-Guourrami O, Azalmad H, Metni KB, Koursaoui L, Zahidi A, Doukkali A, Satani B, Benzeid H. Assessment of Acute Toxicity and Analgesic Effect of Cedrus atlantica (Endl.) G. Manetti ex Carrière Stem Extracts. Trop J Nat Prod Res. 2024;8(7): 7677-7681. https://doi.org/10.26538/tjnpr/v8i7.7
Ameggouz M, Drioua S, El-Guourrami O, Azalmad H, Ouajdi M, Zahidi A, Doukkali A, Satani B, Benzeid H. Phytochemical Analysis and Evaluation of the Antioxidant Activity of Cedrus atlantica (Endl.) G. Manetti ex Carrière Stem Extracts. Trop J Nat Prod Res. 2024; 8(3):6741‑6750. https://doi.org/10.26538/tjnpr/v8i3.40
Zrira S and Ghanmi M. Chemical Composition and Antibacterial Activity of the Essential oil of Cedrus atlantica (Cedarwood oil). J Essent Oil-Bear Plants. 2016; 19(5):1267–1272. https://doi.org/10.1080/0972060X.2015.1137499
Ninich O, Fahim EE, Satrani B, Burrid S, Ghanmic M, Aarabi S, Chauiyakh O, Kettani K, Ettahir A. Comparative Chemical and Biological Analysis of Wood and Tar Essential Oils from Cedrus atlantica and Juniperus oxycedrus in Morocco. Trop J Nat Prod Res. 2024;8(3):6570–6581. https://doi.org/10.26538/tjnpr/v8i3.15
Elmiziani I, Houbairi S, Essahli M, Lhaloui S, Lamiri A. Lead corrosion inhibition by Cedrus atlantica as a green inhibitor in 0.1M Na2CO3 solution. Int J Adv Chem. 2017; 5(1):1–7. https://doi.org/10.14419/ijac.v5i1.7115.
Belkacem N, Khettal B, Hudaib M, Bustanji Y, Abu-Irmaileh B, Amrine CSM. Antioxidant, antibacterial, and cytotoxic activities of Cedrus atlantica organic extracts and essential oil. Eur J Integr Med. 2021; 42:101292. https://doi.org/10.1016/j.eujim.2021.101292
Oukhrib A, Zaki M, Ait El Had M, Karroumi J, Bouamama H, Benharref A, Urrutigoïty M. Synthesis of cyclopropane ring derivatives from natural β-himachalene and evaluation of their antimicrobial activity by bioautography. RHAZES: Green Appl Chem. 2019; 6:61–70. https://doi.org/10.48419/IMIST.PRSM/rhazes-v6.17798
Thielmann J, Muranyi P, Kazman P. Screening essential oils for their antimicrobial activities against the foodborne pathogenic bacteria Escherichia coli and Staphylococcus aureus. Heliyon. 2019; 5(6):e01860. https://doi.org/10.1016/j.heliyon.2019.e01860
Saab AM, Lampronti I, Borgatti M, Finotti A, Harb F, Safi S, Gambari R. In vitro evaluation of the anti-proliferative activities of the wood essential oils of three Cedrus species against K562 human chronic myelogenous leukaemia cells. Nat Prod Res. 2012; 26(23):2227–2231. https://doi.org/10.1080/14786419.2011.643885
Hung PH, Hsieh MC, Lee SC, Huang XF, Chang KF, Chen SY, Lee MS, Tsai NM. Effects of Cedrus atlantica extract on acute myeloid leukemia cell cycle distribution and apoptosis. Mol Biol Rep. 2020; 47(11):8935–8947. https://doi.org/10.1007/s11033-020-05947-w
Chang KF, Chang JT, Huang XF, Huang YC, Li CY, Weng JC, Hsiao CY, Hsu HJ, Tsai NM. Cedrus atlantica Extract Suppress Glioblastoma Growth through Promotion of Genotoxicity and Apoptosis: In Vitro and In Vivo Studies. Int J Med Sci. 2021;18(11):2417–2430. https://doi.org/10.1007/s11033-020-05947-w
Emer AA, Donatello NN, Batisti AP, Oliveira Belmonte LA, Santos ARS, Martins DF. The role of the endocannabinoid system in the antihyperalgesic effect of Cedrus atlantica essential oil inhalation in a mouse model of postoperative pain. J Ethnopharmacol. 2018; 210:477–484. https://doi.org/10.1016/j.jep.2017.09.011
Fidah A, Salhi N, Rahouti M, Kabouchi B, Ziani M, Aberchane M, Famiri A. Natural durability of Cedrus atlantica wood related to the bioactivity of its essential oil against wood decaying fungi. Maderas, Cienc Tecnol. 2016; (ahead):0–0. https://doi.org/10.4067/S0718-221X2016005000049
Maya BM, Abedini A, Gangloff SC, Kabouche A, Kabouche Z, Voutquenne-Nazabadioko L. A new δ-tocotrienolic acid derivative and other constituents from the cones of Cedrus atlantica and their in vitro antimicrobial activity. Phytochem Lett. 2017; 20:252–258. https://doi.org/10.1016/j.phytol.2017.05.009
Orchard A, Van Vuuren SF, Viljoen AM. Commercial Essential Oil Combinations against Topical Fungal Pathogens. Nat Prod Commun. 2019;14(1):1934578X1901400139. https://doi.org/10.1177/1934578X1901400139
Pazinato R, Volpato A, Baldissera MD, Santos RCV, Baretta D, Vaucher RA, Giongo JL, Boligon AA, Stefani LM, Da Silva AS. In vitro effect of seven essential oils on the reproduction of the cattle tick Rhipicephalus microplus. J Adv Res. 2016; 7(6):1029–1034. https://doi.org/10.1016/j.jare.2016.05.003
Zoubi YE, El-Akhal F, Farah A, Taghzouti K, Lalami AEO. Chemical composition and larvicidal activity of Moroccan Atlas Cedar (Cedrus atlantica Manetti) against Culex pipiens (Diptera: Culicidae). J App Pharm Sci. 2017; 7:(7):030–034. https://doi.org/10.7324/JAPS.2017.70704
Ainane A, Benhima R, Khammour F, el Kouali M, Talbi M, Abba EH, Cherroud S, Tarik A. Chemical composition and insecticidal activity of five essential oils: Cedrus atlantica, Citrus limonum, Rosmarinus officinalis, Syzygium aromaticum and Eucalyptus globules. Mater Today. 2019; 13:474–485. https://doi.org/10.1016/j.matpr.2019.04.004
Alves TJS, Murcia A, Wanumen AC, Wanderley-Teixeira V, Teixeira ÁAC, Ortiz A, Medina P. Composition and Toxicity of a Mixture of Essential Oils Against Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). J Econ Entomol. 2019; 112(1):164–172. https://doi.org/10.1093/jee/toy275
Skanderi I and Chouitah O. Chemical Characterization and Antioxidant Activity of Cedrus atlantica Manetti Tar (Atlas Cedar Tar). Fr Ukr J Chem. 2020; 8(2):244–255. https://doi.org/10.17721/fujcV8I2P244-255
Hofmann T, Visi-Rajczi E, Bocz B, Bocz D, Albert L. Antioxidant Capacity and Tentative Identification of Polyphenolic Compounds of Cones of Selected Coniferous Species. Acta Silv Lignaria Hung. 2020; 16(2):79–94. https://doi.org/10.37045/aslh-2020-0006
Prado JM and Rostagno MA. Natural Product Extraction: Principles and Applications. Vol. 71. R. Soc. Chem.; 2022. 757 p.
Ez Zoubi Y, El Ouali Lalami A, Dalila B, Moschos P, Daferera D, Lachkar M, El Khanchoufi A, Farah A. Chemical Composition, Antioxidant and Antimicrobial Activities of the Essential Oil and its Fractions of Lavandula stoechas L. FromMorocco. Int J Curr Pharm Res. 2017; 8(01). https://doi.org/10.25258/ijcprr.v8i01.9092
Lee J. Evaluation of Composted Cattle Manure Rate on Bulb Onion Grown with Reduced Rates of Chemical Fertilizer. HortTechnol. 2012; 22(6):798–803. https://doi.org/10.1016/j.foodchem.2010.07.003
Goudjil R, Mekhaldi A, Benamar H, Bensouici C, Kahoul MA. Phenolic Content, Antioxidant Properties, Key Enzyme Inhibitory Potential and Photoprotective Activity of Lawsonia inermis L. Curr Bioact Compd. 2021; 17(9):65–74. https://doi.org/10.2174/1573407216999201228205659
Chakrabarti R, Singh B, VN P, Vanchhawng L, Thirumurugan K. Screening of nine herbal plants for in vitro a-amylase inhibition. Asian J Pharm Clin Res. 2014; 7(4):84–89.
Kee KT, Koh M, Oong LX, Ng K. Screening culinary herbs for antioxidant and α‐glucosidase inhibitory activities. Int J of Food Sci Technol. 2013; 48(9):1884–1891. https://doi.org/10.1111/ijfs.12166
Hidayah H, Amal S, Yuniarsih N, Farhamzah FF, Kusumawati AH, Gunarti NS, Abriyani E, Mursal I L P, Sundara A K, Alkandahri M Y. Sun Protection Factor Activity of Jamblang Leaves Serum Extract (Syzygium cumini). Pharmacogn J. 2023; 15(1):134–140. https://doi.org/10.5530/pj.2023.15.18
Maharini I. In Vitro Determination of SunProtective Factor (SPF) of Dadap Serep (Erythrina Subumbrans (Haks.) Merr.) Leaf Extract Using Spectrophotometric Method. J of chem nat resour. 2019; 1(1):64–67. https://doi.org/10.32734/jcnar.v1i1.836
Andreassi M, Stanghellini E, Ettorre A, Di Stefano A, Andreassi L. Antioxidant activity of topically applied lycopene. Acad Dermatol Venereol. 2004; 18(1):52–55. https://doi.org/10.1111/j.1468-3083.2004.00850.x
Arturo Londoño-Vallejo J. Un Nobel centenaire célèbre télomères et télomérase. Med Sci (Paris). 2009; 25(11):973–976. https://doi.org/10.1051/medsci/20092511973
Beissert S and Schwarz T. Mechanisms Involved in Ultraviolet Light-Induced Immunosuppression. J Investig Dermatol Symp Proc. 1999; 4(1):61–64. https://doi.org/10.1038/sj.jidsp.5640183
Bergenstal RM, Johnson M, Powers MA, Wynne A, Vlajnic A, Hollander P, Rendell M. Adjust to Target in Type 2 Diabetes. Diabetes Care. 2008; 31(7):1305–1310. https://doi.org/10.2337/dc07-2137
Hseu YC, Tsai YC, Huang PJ, Ou TT, Korivi M, Hsu LS, Chang SH, Wu CR, Yang HL. The dermato-protective effects of lucidone from Lindera erythrocarpa through the induction of Nrf2-mediated antioxidant genes in UVA-irradiated human skin keratinocytes. J Funct Foods. 2015; 12:303–318. https://doi.org/10.1016/j.jff.2014.10.019
Ebrahimzadeh MA, Enayatifard R, Khalili M, Ghaffarloo M, Saeedi M, Yazdani Charati J. Correlation between Sun Protection Factor and Antioxidant Activity, Phenol and Flavonoid Contents of some Medicinal Plants. Iran J Pharm Res. 2014; 13(3):1041–1047.
Kumawat M, Damor J, Kachchhwaha J, Garg AK, Singh C. Pharmacological properties and therapeutic potential of Syzygium cumini (Jamun): A review. World J Pharm Pharm Sci. 2018; 7:312–322. https://doi.org/10.20959/wjpr20183-10877
El Hachlafi N, Mrabti HN, Al-Mijalli SH, Jeddi M, Abdallah EM, Benkhaira N, Hadni H, Assaggaf H, Qasem A, Goh KW, AL-Farga A, Bouyahya A, Fikri-Benbrahim k. Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations. Mol. 2023; 28(15):5913. https://doi.org/10.3390/molecules28155913
Heinrich M, Jiang H, Scotti F, Booker A, Walt H, Weckerle C, Maake C. Medicinal plants from the Himalayan region for potential novel antimicrobial and anti-inflammatory skin treatments. J Pharm Pharmacol. 2021; 73(7):956–967. https://doi.org/10.1093/jpp/rgab039
Cheraif K, Bakchiche B, Gherib A, Bardaweel SK, Çol Ayvaz M, Flamini G, Ascrizzi R, Ascrizzi MA. Chemical Composition, Antioxidant, Anti-Tyrosinase, Anti-Cholinesterase and Cytotoxic Activities of Essential Oils of Six Algerian Plants. Mol. 2020; 25(7):1710. https://doi.org/10.3390/molecules25071710
Chaita E, Lambrinidis G, Cheimonidi C, Agalou A, Beis D, Trougakos I, Mikros E, Skaltsounis AL, Aligiannis N. Anti-Melanogenic Properties of Greek Plants. A Novel Depigmenting Agent from Morus alba Wood. Mol. 2017; 22(4):514. https://doi.org/10.3390/molecules22040514
Chiocchio I, Mandrone M, Sanna C, Maxia A, Tacchini M, Poli F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind Crops. 2018; 122:498–505. https://doi.org/10.1016/j.indcrop.2018.06.029
Kakumu Y, Yamauchi K, Mitsunaga T. Identification of chemical constituents from the bark of Larix kaempferi and their tyrosinase inhibitory effect. Holzforschung. 2019; 73(7):637–643. https://doi.org/10.1515/hf-2018-0267
Yang H, Wang Z, Song W, Zhao Z, Zhao Y. Isolation of proanthocyanidins from Pinus thunbergii needles and tyrosinase inhibition activity. Process Biochem. 2021; 100:245–251. https://doi.org/10.1016/j.procbio.2020.10.003
Oboh G, Ogunsuyi OB, Ogunbadejo MD, Adefegha SA. Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose. J Food Drug Anal. 2016; 24(3):627–634. https://doi.org/10.1016/j.jfda.2016.03.003
Yuan Y, Zhang J, Fan J, Clark J, Shen P, Li Y, Zhang C. Microwave assisted extraction of phenolic compounds from four economic brown macroalgae species and evaluation of their antioxidant activities and inhibitory effects on α-amylase, α-glucosidase, pancreatic lipase and tyrosinase. Int Food Res. 2018; 113:288–297. https://doi.org/10.1016/j.foodres.2018.07.021
Loizzo MR, Saab AM, Statti GA, Menichini F. Composition and α-amylase inhibitory effect of essential oils from Cedrus libani. Fitoterapia. 2007; 78(4):323–326. https://doi.org/10.1016/j.fitote.2007.03.006