In vitro Inhibitory Activity of Bacillus amyloliquefaciens Isolates against Botrytis cinerea Mycelial Growth and Determination of the Minimal Inhibitory Concentration
Main Article Content
Abstract
Gray mold disease, caused by Botrytis cinerea is a major postharvest disease impacting fruits such as strawberries. Bacillus species are promising agent for the biological control of postharvest diseases. Biological control agents at suitable population, should be able to effectively interact with pathogens to produce satisfactory disease control. Knowledge on the relationships between biocontrol agent and pathogen inoculum concentration can determine the population levels of the biocontrol agent required to achieve adequate disease control. This study aimed to determine the inhibitory effect of nine Bacillus amyloliquefaciens isolates from rhizospheric soil and roots of strawberries plants against Botrytis cinerea mycelial growth in vitro.
Nine bacterial isolates (I1, I2, I3, I18, B3, B24, B12, RA9, and RA12) were selected from rhizospheric soil and roots of healthy strawberry plants. The bacterial isolates at different concentrations (3x101 to 3x107 cfu/mL) were tested for their inhibitory activity against mycelial growth of Botrytis cinerea using the plate confrontation assay in a potato dextrose agar. The results showed that all the isolates inhibited Botrytis cinerea mycelial growth in a concentration-dependent manner, with isolates B3 and B24 exhibiting the most effective activity showing 50.68% inhibition at 3x103 cfu/mL (B3), and 31.91% inhibition at 3x101 cfu/mL (B24). The minimum inhibitory concentration (MIC) for both B3 and B24 was 3x105 cfu/mL. The MIC for isolates I1, I2 and I18 was 3x106 cfu/mL, while the other isolates had MIC ≥.3x107 cfu/mL. These findings suggest that the two isolates B3 and B24 could serve as biocontrol agents for Gray mold.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Giampieri F, Forbes-Hernandez TY, Gasparrini M, Alvarez-Suarez JM, Afrin S, Bompadre S, Quiles JL, Mezzetti B, Battino M. Strawberry as a health promoter: an evidence-based review. Food Funct. 2015; 6:1386–1398. doi: 10.1039/c5fo00147a.
Petrasch S, Knapp SJ, van Kan JAL, Blanco-Ulate B. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Mol Plant Pathol. 2019; 20:877–892. doi: 10.1111/mpp.12794.
Shen H, Wei Y, Wang X, Xu C, Shao X. The marine yeast Sporidiobolus pararoseus ZMY-1 has antagonistic properties against Botrytis cinerea in vitro and in strawberry fruit. Postharvest Biol Technol. 2019; 150:1–8.
Hassan EA, Mostafa YS, Alamri S, Hashem M, Nafady NA. Biosafe Management of Botrytis Grey Mold of strawberry fruit by novel bioagents. Plants (Basel). 2021; 10(12):2737. doi: 10.3390/plants10122737.
Garrido C, Carbú M, Fernández-Acero FJ, González-Rodríguez VE, Cantoral JM. New insights in the study of strawberry fungal pathogens. Genes Genom Gen. 2011; 5:24–39.
Nguyen XH, Naing KW, Lee YS, Moon JH, Lee JH, Kim KY. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits. J Basic Microbiol. 2015; 55:625–634. doi: 10.1002/jobm.201400041.
Verhoeff K. The Infection Process and Host-Pathogen Interactions. In: The Biology of Botrytis; Coley Smith, J. R., Verhoeff, K., Jarvis, W. R., Eds.; Academic Press: London; 1980; 153-175 p.
Elad Y, Williamson B, Tudzynsky P, Delen N. Botrytis: Biology, Pathology and Control; Eds.; Kluwer Academic Publishers: Dordrecht, The Nertherlands. 2004.
Shi JF and Sun CQ. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest. Braz J Microbiol. 2017; 48:706–714.
Stenberg JA, Sundh I, Becher PG, Björkman C, Dubey M, Egan PA, Friberg H, Gil JF, Jensen DF, Jonsson M, Karlsson M, Khalil S, Ninkovic V, Rehermann G, Vetukuri RR, Viketoft M. When is it biological control? A framework of definitions, mechanisms, and classifications. J Pest Sci. 2021; 94:665–676. DOI:10.1007/s10340-021-01354-7.
Miljakovi´c D, Marinkovi´c J, Baleševi´c-Tubi´c, S. The Significance of Bacillus spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. Microorg. 2020; 8:1037. https://doi.org/10.3390/microorganisms8071037.
Cheng XK, Ji XX, Ge YZ, Li JJ, Qi WZ, Qiao K. Characterization of Antagonistic Bacillus methylotrophicus Isolated from Rhizosphere and Its Biocontrol Effects on Maize Stalk Rot. Phythopathol. 2019; 109:571–581. https://doi.org/10.1094/PHYTO-07-18-0220-R
Shokry ME, Ibrahim SD, Wassief AY. Biological control of pathogens associated with kernel black point disease of wheat. Crop Prot. 2017; 91:13–19. https://doi.org/10.1016/j.cropro.2016.08.034.
Chen X, Zhang Y, Fu X, Li Y, Wang Q. Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biol. Technol. 2016; 115:113–121. https://doi.org/10.1016/j.postharvbio.2015.12.021.
Yu YY, Xu JD, Huang TX, Zhong J, Yu H, Qiu JP, Guo JH. Combination of beneficial bacteria improves blueberry production and soil quality. Food Sci. Nutr. 2020; 8:5776–5784. DOI: 10.1002/fsn3.1772.
Abadi V, Sepehri M, Rahmani HA, Dolatabad HK, Shamshiripour M, Khatabi B. Diversity and abundance of culturable nitrogen-fixing bacteria in the phyllosphere of maize. J Appl Microbiol. 2021; 131:898–912. https://doi.org/10.1111/jam.14975.
Montesinos E and Bonaterra A. Dose-response models in biological control of plant pathogens: An empirical verification. Phytopathol. 1996; 86:464-472.
Smith KP, Handelsman RJ, Goodman M. Modeling dose-response relationship in biological control: Partioning host responses to the pathogen and biocontrol agent. Phytopathol. 1997; 87:720-729.
Wisniewski ME and Wilson CL. Biological control of postharvest diseases of fruits and vegetables: recent advances. HortSci. 1992; 27:94-98.
Samson RA, Hoekstra ES, Oorschot CANV. Introduction to food-borne fungi. 2nd ed. Centraalbureau Voor Schimmelcultures, BAARN. Institute of the Royal Netherlands, Academy of Arts and Sciences, 1984; 248 p.
Botton B, Breton A, Fevre M, Gauthier S, Guy P, Larpent JP, Reymond P, Sanglier JJ, Vayssier Y, Veau P. Moisissures utiles et nuisibles : importance industrielle. 2e éd. rev. et compl. Paris, Milan, Barcelone : Masson, 1990; 512 p.
Hamdache A, Ezziyyani M, Alain B, Lamarti A. Effect of pH, Temperature and Water Activity on the Inhibition of Botrytis cinerea by Bacillus amyloliquefaciens Isolates. Afr J Biotechnol. 2012; 11:2210-2217. DOI:10.5897/AJB11.645.
Tatagiba JDS, Maffia LA, Barreto RW, Acelino CA, Sutton JC. Biological Control of Botrytis cinerea in Residues and Flowers of Rose (Rosa hybrida) Phytoparasitica. 1998; 26(1):1-12.
Zhang H, Wang L, Dong Y, Jiang S, Cao J, Meng R. Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biol Contr. 2007; 40(2):287- 292. https://doi.org/10.1016/j.biocontrol.2006.10.008
Sid Ahmed A, Ezziyyani M, Perez Sanchez C, Candela ME. Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. Eur J Plant Pathol. 2003; 109(6):633-637. DOI: 10.1023/A:1024734216814.
Ezziyyani M, Requena ME, Egea-Gilabert C, Candela ME. Biological Control of Phytophthora Root Rot of Pepper Using Trichoderma harzianum and Streptomyces rochei in Combination. J Phytopathol. 2007; 155:342-349.
Hamdache A, Ezziyyani M, Lamarti A. Effect of Preventive and Simultaneous Inoculations of Bacillus amyloliquefaciens (Fukumoto) Strains on Conidial Germination of Botrytis cinerea Pers: Fr. Anal Biol. 2018; 40:65-72.
Martinez C, Avis TJ, Simard JN, Labonté J, Bélanger RR, Tweddell RJ. The role of antibiosis in the antagonism of different bacteria towards Helminthosporium solani, the causal agent of potato silver scurf. Phytoprotect. 2006; 87(2):69-75. https://doi.org/10.7202/013975ar
Calvo J, Calvente V, Orellano ME, Benuzzi D, Tosetti MIS. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int J Food Microbiol. 2007; 113:251-257.
Yi Y, Shan Y, Liu S, Yang Y, Liu Y, Yin Y, Hou Z, Luan P, Li R. Antagonistic Strain Bacillus amyloliquefaciens XZ34-1 for Controlling Bipolaris sorokiniana and Promoting Growth in Wheat. Pathogens. 2021; 10:1526. https:// doi.org/10.3390/pathogens10111526.
Smith VL, Wilcox WF, Harman GE. Potential for biological control of Phytophthora root and crown rots of apple by Trichoderma and Gliocladium spp. Phytopathol. 1990; 80:880-885.
Schuster DJ. Armyworm and pepper weevil control on bell pepper, Spring 1996. Arthropod Manag Tests. 1997; 22(1):150.
López-Herrera CJ, Pérez-Jiménez RM, Basallote-Ureba MJ, Zea-Bonilla T, Melero-Vara JM. Loss of viability of Dematophora necatrix in solarized soils. Eur. J. of Plant Pathol. 1999; 105:571-576.
McLeod BJ, Thompson EG, Crawford JL. Synchrony of onset and cessation of breeding activity in brushtail possums (Trichosurus vulpecula) in coastal Otago, New Zealand. Proc New Zealand Soc Anim Prod. 1999; 59:229-232.