Phytochemicals and Antioxidant Properties of Ethanol Extract of Terap Fruit Seeds (Artocarpus odoratissimus)
Main Article Content
Abstract
Artocarpus odoratissimus commonly called Terap plant is used in ethnomedicine for the treatment of many diseases. The plant contains several secondary metabolites including terpenoids, flavonoids, stilbenoids, arylbenzofurans, and neolignans found in different parts of the plant. However, little research has been conducted on the chemical profiles and antioxidant activity of Terap fruit seeds extract. This study aimed to investigate the chemical profile, and the antioxidant activity of Terap fruit seeds. Terap fruit seeds were extracted by maceration in ethanol (70%). The total phenolic and flavonoid contents of the extract was determined by colorimetric methods. The extract was subjected to liquid chromatography-high resolution mass spectrometry (LC-HRMS/MS) analysis to identify the compounds present. The antioxidant activity was evaluated using the 2.2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging, and cupric ion reducing antioxidant capacity (CUPRAC) assays. The total phenolic and flavonoid contents of the extract were 0.1178 ± 0.0099 mg GAE/g and 0.0598 ± 0.0385 mg RE/g, respectively. LC-HRMS/MS analysis identified 44 compounds, including amino acids, fatty acids, phenolics, nitrogen bases, vitamins, organic acids, carbonyl, and thiazole compounds, with five specific phenolic compounds being noted. The extract demonstrated significant antioxidant activity with IC50 values of 25.0984 ± 0.7707 ppm and 17.9385 ± 0.0986 ppm for DPPH and ABTS radical scavenging activity, respectively. The extract also demonstrated high CUPRAC with trolox equivalent antioxidant capacity (TEAC) of 288.9660 ± 3.3264 ppm. These findings suggest that Terap fruit seeds has high antioxidant potential, which can be harnessed for the management of oxidative stress-related diseases.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Nugroho AW. Conservation of Biodiversity through Medicinal Plants in Forests in Indonesia with Pharmaceutical Technology: Potential and Challenges. J. Sains. Kes. 2017; 1(7):377-383.
Triratnawati A. Traditional medicine, an effort to minimize the health costs of village communities in Java. J. Healthcare. Manag. 2010; 13(2):69-73.
Yulianti I, Padlilah R, Ariyanti R, Retnowati Y, Febrianti S, Purnamasari A. Mapping review of the potential of Tarap Plants (Artocarpus odoratissimus) for health. Int. J. Health. Sci. 2022; (IV):2351-2357.
Lestari VP, Wijayanti S, Mustamin F. Screening Phytochemistry Extract Ethanol Biji Buah Tarap (Artocarpus odoratissimus). J. Borneo. 2024; 4(2):37-46.
Retnaningati D. Ethnobotanical Study of Food Plants of East Tarakan Community, North Kalimantan. Biopedagogia. 2023; 5(1):49-56.
Rodrigues S, de Oliveira Silva E, de Brito ES. Exotic Fruits Reference Guide. Academic Press; 2018.
Mutmainnah PA, Hakim A, Savalas LRT. Identification of Derivative Compounds Resulting from Fractionation of Artocarpus Odoratissimus Root Wood. Sci. Edu. Res. J. 2017; 3(2):26-32
Rizki MI. Antioxidant Activity of Ethanol Extracts of Cempedak Leaves (Artocarpus integer), Jackfruit (Artocarpus heterophyllus), and Tarap (Artocarpus odoratissimus) from South Kalimantan. J. Curr. Pharm Sci. 2021; 4(2):367-372.
Ramadhan H, Baidah D, Lestari NP, Yuliana KA. Antioxidant activity of ethanol extract of 96% leaves, fruits and peels (Artocarpus odorratissimus) using the CUPRAC method. Pharmacology: Scientific. J. Pharm Sci. 2020; 7(1):7-12.
Solichah AI, Anwar K, Rohman A, Fakhrudin N. Phytochemical profile and antioxidant activity of several plants of the genus Artocarpus in Indonesia. J. Food. Pharm. Sci. 2021; 443-460.
Augustine R, Hasan A, Primavera R, Wilson RJ, Thakor AS, Kevadiya BD. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun. 2020; 25:101692.
Yamin, R., Mistriyani, S., Ihsan, S., Armadany, F. I., Sahumena, M. H., & Fatimah, W. O. N. (2021). Determination of total phenolic and flavonoid contents of jackfruit peel and in vitro antiradical test. Food Res. J, 5(1), 84-90.
Bakar MFA, Karim FA, Perisamy E. Comparison of phytochemicals and antioxidant properties of different fruit parts of selected Artocarpus species from Sabah, Malaysia. Sains. Malays. 2015; 44(3):355-363.
Bidayah N and Nurrahma IM. Antibacterial Power Test Using Applied Leaf Extract (Artocarpus Odoratissimus Blanco) on the Growth of Staphylococcus aureus Bacteria. Borneo. J. Pharmascientech. 2019; 3(1).: 1-9
Genaro Jr FA. Phytochemical Screening of Artocarpus odoratissimus (Marang) Seed Extract and Its Antimicrobial Potential against Staphylococcus aureus and Escherichia coli. Annu. Res. Rev. Biol. 2024; 39(7):46-53.
Jonatas KAS, Querequincia JMB, Miranda SD, Obatavwe U, Corpuz MJA, Vasquez RD. Antidiabetic evaluation of Artocarpus odoratissimus (Moraceae) fruit. Sci. J. Pharm. 2020; 16(1):1-8.
Ee GCL, Teo SH, Rahmani M, Lim C K, Lim YM, Bong CFJ. Artosimmin - A potential anti-cancer lead compound from Artocarpus odoratissimus. Lett. Org. Chem. 2010; 7(3):240-244.
Kementrian Kesehatan Republik Indonesia. Farmakope Herbal Indonesia / Herbal Pharmacopoeia Guidelines of Indonesia. 2017.
Ijoma KI, Ajiwe VIE, Odinma SC. The organic extracts from the leaves of Ficus thonningii Blume, Jatropha tanjorensis JL Ellis and Saroja and Justicia carnea Lindley as potential nutraceutical antioxidants and functional foods. Trends. Phytochem. Res. 2023; 7(1):76-85.
Putri NS, Limanan D, Yulianti E, Ferdinal F. Comparison of Total Antioxidant Capacity Test of Moringa Leaf Extract with DPPH, FRAP, and ABTS Methods. J. Sehat. Indonesia (JUSINDO). 2024; 6(02):869-877.
Tasmin N and Kusuma IW. Isolation, identification and toxicity test of chloroform fraction flavonoid compounds from applied leaves (Artocarpus odoratissimus Blanco). J. Kimia. Mulawarman. 2015; 12(1).:45-52
Pourmorad F, Hosseinimehr SJ, Shahabimajd N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol. 2006; 5(11):1142-1145.
Bhuyan DJ and Basu A. Phenolic Compounds potential health Benefits and toxicity. In: Vuong QV (Eds), Utilisation of Bioactive Compounds from Agricultural and Food Production Waste. 1st Edition, CRC Press, Boca Raton. 2017. https://api.semanticscholar.org/CorpusID:216819316
Kulbat K. The role of phenolic compounds in plant resistance. 2016. Available at https://api.semanticscholar.org/CorpusID:90145129
Albuquerque BR, Heleno SA, Oliveira MBPP, Barros L, Ferreira ICFR. Phenolic compounds: current industrial applications, limitations and future challenges. Food Funct. 2020. Available at https://api.semanticscholar.org/CorpusID:227176012
Tristantini D and Amalia R. Quercetin concentration and total flavonoid content of anti-atherosclerotic herbs using aluminum chloride colorimetric assay. The 4th Biomedical Engineering’s Recent Progress in Biomaterials, Drugs Development, Health, and Medical Devices: Proc Int Sym Biomed Eng 2019. Available at https://api.semanticscholar.org/CorpusID:214168023
Kiranmai M, Kumar CM, Ibrahim MF. Comparison of total flavanoid content of Azadirachta indica root bark extracts prepared by different methods of extraction. 2011. Available at https://api.semanticscholar.org/CorpusID:97500913
Kalita P, Tapan BK, Pal T, Kalita R. Estimation of Total Flavonoids Content (TFC) and Anti Oxidant Activities Of Methanolic Whole Plant Extract of Biophytum Sensitivum Linn. J. Drug. Deliv. Ther. 2013; 3:33-37. https://api.semanticscholar.org/CorpusID:97671561
Makuasa D and Ningsih P. The Analysis of Total Flavonoid Levels in Young Leaves and Old Soursop Leaves (Annona muricata L.) Using UV-Vis Sepctrofotometry Methods. J. Appl. Sci. Eng. Technol. Edu. 2020; 2:11-17. doi:10.35877/454RI.asci2133
Naveed M, Hejazi V, Abbas M, Kamboh AA. Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, fangFang X, Ghazani FM,Wenhua L, XiaoHui Z. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018; 97:67-74. https://api.semanticscholar.org/CorpusID:5469928
Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome. Molecules; 2017; 22(3):358. https://api.semanticscholar.org/CorpusID:14895630
Oboh G, Agunloye OM, Adefegha SA, Akinyemi AJ, Ademiluyi AO. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study. J. Basic. Clin. Physiol Pharmacol. 2015; 26:165-170. https://api.semanticscholar.org/CorpusID:26454745
Wang Y and Ho CT. Effects of Naturally Occurring Phenolic Compounds in Coffee on the Formation of Maillard Aromas. 2013. Available at https://api.semanticscholar.org/CorpusID:83626202
Cherukuvada S, Bolla G, Sikligar K, Nangia AK. 4-Aminosalicylic Acid Adducts. Cryst Growth Des. 2013; 13:1551-1557. https://api.semanticscholar.org/CorpusID:101367925
Nqoro X, Jama S, Morifi EL, Aderibigbe BA. 4-Aminosalicylic Acid-based Hybrid Compounds: Synthesis and In vitro Antiplasmodial Evaluation. Lett Drug Des Discov. 2020; 17. https://api.semanticscholar.org/CorpusID:225494574
Qahtan MQM, Bakhite EA, Kumari J, Sayed AM, Kandeel M, Sriram D, Abdu‐Allah HHM. Synthesis, biological evaluation and molecular docking study of some new 4-aminosalicylic acid derivatives as anti-inflammatory and antimycobacterial agents. Bioorg. Chem. 2023; 132:106344. https://api.semanticscholar.org/CorpusID:255875796
Saeedi M, Eslamifar M, Khezri K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed Pharmacother. 2019; 110:582-593.
Gao XY, Li XY, Zhang CY, Bai CY. Scopoletin: a review of its pharmacology, pharmacokinetics, and toxicity. Front Pharmacol. 2024; 15:1268464 https://api.semanticscholar.org/CorpusID:267969040
Firmansyah A, Winingsih W, Dian J, Manobi Y. Review of Scopoletin: Isolation, Analysis Process, and Pharmacological Activity. Biointerface Res Appl Chem. 2020. 11(4):12006-12019https://api.semanticscholar.org/CorpusID:243288888
Shapla UM, Solayman Md, Alam N, Khalil MdI, Gan SH. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chem Cent J. 2018; 12.35. https://api.semanticscholar.org/CorpusID:4612466
Miranda IR, Ordoñez YM, Ancona DB. Relevance of Hydroxymethylfurfural And Melanoidins as Products of Maillard Reactions in Honey. U. Arı D. Bee J. 2022; 22(1):96-113. https://api.semanticscholar.org/CorpusID:248308728
Wang Y, Brown CA, Chen R. Industrial production, application, microbial biosynthesis and degradation of furanic compound, hydroxymethylfurfural (HMF). AIMS Microbiol. 2018; 4:261-273. https://api.semanticscholar.org/CorpusID:139833991
Škrovánková S, Mišurcová L, Machů L. Chapter Three - Antioxidant Activity and Protecting Health Effects of Common Medicinal Plants. In: Jeyakumar Henry (Eds), Adv Food Nutr Res. 2012; 67:75-139.
Nabeelah BS, Montesano D, Albrizio S, Zengin G, Mahomoodally MF. The Versatility of Antioxidant Assays in Food Science and Safety Chemistry, Applications, Strengths, and Limitations. Antioxidants. 2020; 9(8):709.
Reviana R, Usman AN, Raya I, Dirpan A, Arsyad A, Fendi F. Analysis of antioxidant activity on cocktail honey products as female pre-conception supplements. Gac Sanit. 2021; 35:S202-S205.
Jiang L, Han X, Wang L, Zheng H, Ma G, Wang X, Tang Y, Zheng X, Liu C, Wan Y, Xiang D. Effects of Eurotium cristatum Fermentation on Tartary Buckwheat Leaf Tea: Sensory Analysis, Volatile Compounds, Non-Volatile Profile and Antioxidant Activity. Fermentation. 2024; 10(7):369.
Zilles JC, Dos Santos FL, Kulkamp‐Guerreiro IC, Contri RV. Biological activities and safety data of kojic acid and its derivatives: A review. Exp Dermatol. 2022; 31(10):1500-1521.
Rho HS, Lee CS, Ahn SM, Hong YD, Shin SS, Park Y-H. Studies on tyrosinase inhibitory and antioxidant activities of benzoic acid derivatives containing kojic acid moiety. Bull Korean Chem Soc. 2011; 32(12):4411-4414.
Meilawati L, Ernawati T, Dewi RT, Megawati M, Sukirno S. Study of total phenolic, total flavonoid, scopoletin contents and antioxidant activity of extract of ripened noni juice. Indonesian J Appl Chem. 2021; 23(2):55-62.
Mogana R, Teng-Jin K, Wiart C. Anti‐Inflammatory, Anticholinesterase, and Antioxidant Potential of Scopoletin Isolated from Canarium patentinervium Miq. (Burseraceae Kunth). Evid‐Based Complement Alternat Med. 2013; 2013(1):734824.
Zhao L, Chen J, Su J, Li L, Hu S, Li B, Zhang X, Xu Z, Chen T.. In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. J Agric Food Chem. 2013; 61(44):10604-10611.
Apak R, Güçlü K, Özyürek M, Çelik SE. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta. 2008; 160:413-419.