Effect of Ethanol Extract of Amaranthus Viridis (Inine) on Potassium-Bromide-Induced Haematoxicity in Wistar Rats Tropical Journal of Natural Product Research

Main Article Content

Innocent I. Ujah
Godwin S. Alor
Cosmas E. Achikanu
Onuabuchi N. Ani
Chukwunonso A.  Nsude
Uchenna B. Alozieuwa
Jane I. Ugochukwu
Ebere I. Akpata
Justice C. Ude
Kenechukwu C. Onyishi
Innocent O. Okpako
Chukwuemeka O. Okechukwu
Obiora E. Nneji
Chikezie K. Ogbu
Chinenye A. Anieke
Onyebuchi P. Ogbodo

Abstract

Potassium Bromate (KBrO3) is an oxidative agent capable of causing hematological alterations and other toxic effects. Amaranthus Viridis (Inine) is a medicinal plant traditionally used for various therapeutic purposes. This study investigated the ameliorative effect of ethanol extract of Amaranthus viridis (Inine) on the haematological parameters in potassium bromate (KBrO3) intoxicated Albino Rats. Thirty (30) rats divided into six (6) groups consisting of five rats each, group one as the normal control, group two as the negative control (50 mg/kg of KBrO3 only), group three Vitamin C (100 mg/kg) + 50 mg/kg of KBrO3and group four to six (200 mg/kg, 400 mg/kg, and 800 mg/kg) respectively.   KBrO3 exposure significantly altered some haematological indices in the rats indicating a haematotoxic effects. The results showed a dose-dependent improvement in several haematological parameters upon coadministration of Amaranthis viridis occurred. The red blood cell count (RBC), packed cell volume (PCV), haemoglobin concentration (Hb), and white blood cell count (WBC) exhibited notable recovery in comparison to the KBrO3-treated group. Platelet count (PLT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) also demonstrated positive alterations in response to the extract. The group receiving the highest dose of the leaf extract (800 mg/kg) alongside KBrO3 displayed the most significant improvement in the aforementioned parameters, indicating a potential dose-dependent protective effect against KBrO3-induced haematotoxicity. These findings suggest the potential therapeutic efficacy of Amaranthus viridis extract in mitigating KBrO3-induced hematological alterations.

Downloads

Article Details

How to Cite
Ujah, I. I., Alor, G. S., Achikanu, C. E., Ani, O. N., Nsude, C. A., Alozieuwa, U. B., Ugochukwu, J. I., Akpata, E. I., Ude, J. C., Onyishi, K. C., Okpako, I. O., Okechukwu, C. O., Nneji, O. E., Ogbu, C. K., Anieke, C. A., & Ogbodo, O. P. (2025). Effect of Ethanol Extract of Amaranthus Viridis (Inine) on Potassium-Bromide-Induced Haematoxicity in Wistar Rats: Tropical Journal of Natural Product Research. Tropical Journal of Natural Product Research (TJNPR), 9(2), 728-733. https://doi.org/10.26538/tjnpr/v9i2.40
Section
Articles

References

Shanmugavel V, Santhi KK, Kurup AH, Kalakandan S, Anandharaj A, Rawson A. Potassium bromate: Effects on bread components, health, environment and method of analysis: A review. Food Chem. 2020;311:125964. doi: 10.1016/j.foodchem.2019.125964

Radwan SA, El Wessemy AM, Abdel-Aziz BF, Abdel-Baky ES. Study the protective effect of vitamin E against potassium bromate toxicity on some hematological, renal, and hepatic functions in male rats. Bull Pharm Sci Assiut Univ. 2022;45(2):903-913. https://journals.ekb.eg/article_271769_5c2707f8713ac7ab7906b5da4a4ce8cc.pdf

Abdel-Alim ME, Serag MS, Moussa HR, Elgendy MA, Mohesien MT, Salim NS. Phytochemical screening and antioxidant Potential of Lotus corniculatus and Amaranthus viridis. Egypt J Bot. 2023;63(2):665-681.

https://journals.ekb.eg/article_290445_cb808804721c16742187ad86a5e37b51.pdf

Soriano-García M, Aguirre-Díaz IS. Nutritional functional value and therapeutic utilization of Amaranth. In: Nutritional value of Amaranth. IntechOpen; 2019.

Sunday EA, Gift WP, Boobondah WJ. Phytochemistry and antioxidant activity of Amaranthus viridis L (Green leaf). World J Adv Res Rev. 2021;12(2):306-314. doi: 10.30574/wjarr.2021.12.2.0468

Attah AF, Fagbemi AA, Olubiyi O, Dada-Adegbola H, Oluwadotun A, Elujoba A, Babalola CP. Therapeutic potentials of antiviral plants used in traditional African medicine with COVID-19 in focus: a Nigerian perspective. Front Pharmacol. 2021;12:596855.

Singh NN, Srivastava AK. Haematological parameters as bioindicators of insecticide exposure in teleosts. Ecotoxicology. 2010;19(4):838-854. doi: 10.1007/s10646-010-0465-4. https://link.springer.com/article/10.1007/s10646-010-0465-4

Nwachukwu DA, Uchendu IK, Nwafor GO, Ogbonna CC, Kwaor IA, Onyishi JC, et al. The Effects of Flauzifop-p-butyl on Behavioural Changes, Acetylcholinesterase, serum biochemical parameters, and haematologicalindices in albino rats. Trop. J Nat Prod Res. 2024;8(10). doi:10.26538/tjnpr/v8i10.25

Ben Saad H, Nasri I, Elwej A, Krayem N, Jarraya R, Kallel C, Amara IB. A mineral and antioxidant-rich extract from the red marine algae Alsidium corallinum exhibits cytoprotective effects against potassium bromate-induced erythrocyte oxidative damages in mice. Biol Trace Elem Res. 2014;160(1):85-96. doi: 10.1007/s12011-014-0025-5

Ogbiko C, Eboka JC, Igbe I, Usman DM. Anti-Ulcer activity of methanol extract of Plantago rugelii Decne. (Plantaginaceae). Trop J Nat Prod. Res. 2017;1(2):84-88. https://www.tjnpr.org/

Engwa GA. Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. Phytochemicals: source of antioxidants and role in disease prevention. BoD-Books on Dem. 2018;7:49-74. doi: 10.5772/intechopen.76719

Park SJ, Sharma A, Lee HJ. A review of recent studies on the antioxidant activities of a third-millennium food: Amaranthus spp. Antioxidants. 2020;9(12):1236. https://doi.org/10.3390/antiox9121236

Netshimbupfe MH, Berner J, Van Der Kooy F, Oladimeji O, Gouws C. The importance and use of Amaranthus for crop diversification in the SADC region. S Afr J Bot. 2023;152:192-202. https://doi.org/10.1016/j.sajb.2022.11.039

Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol. 1983;54(4):275-287. https://link.springer.com/article/10.1007/bf01234480

Orieke UA, Udegbunam SO, Akunne TC, Okoye FBC, Eze GI. Evaluation of acute and subacute toxicity of methanolic leaf extract of Cassia alata in rats. Toxicol Rep. 2019;6:830-835.

Dacie JV, Lewis SM. Practical Haematology. 7th ed. London: Churchill Livingstone; 1991.

Chabra G. Automated hematology analyzers: recent trends and applications. J Lab Phys. 2018;10(1):015-016. https://www.thieme-connect.com/products/ejournals/pdf/10.4103/jlp.jlp_124_17.pdf

Bain BJ, Bates I, Laffan MA. Dacie and Lewis Practical Haematology. 11th ed. London: Elsevier Churchill Livingstone; 2012.

Emmanuel AM, Roger KK, Toussaint DG, Koffi K. Acute and subacute toxicity of the aqueous extract of Amaranthus viridis (Amaranthaceae) leaves in rats. J Phytopharmacol. 2018;7(4):366-372. https://phytopharmajournal.com/assets/pdf_files/Vol7_Issue4_03.pdf

Jiménez-Aguilar DM, Grusak MA. Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. J Food Compos Anal. 2017;58:33-39. https://doi.org/10.1016/j.jfca.2017.01.005

Mofunanya AAJ, Ekpiken EE, Ikwa EO, Owolabi AT. Impact of Telfairia mosaic virus on medicinal and economic potentials of Amaranthus viridis L. Asian J. Res Bot. 2021;5(4):15-25. http://archive.sdpublishers.com/id/eprint/198

Kumar A, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;162750. doi: 10.1155/2013/162750

Sayadi MH, Fahoul N, Kharkan J, Khairieh M. Investigating the protective effects of Elaeagnus angustifolia fruit extract on hematological parameters and damage of different tissues of male mice exposed to graphene oxide nanoparticles. Nano Select. 2023;4(9-10):559-583. doi:

10.1002/nano.202300070

Ugwu NI, Uche CL, Airaodion AI, Ogbenna AA, Chikezie K, Okite UP, et al. Impact of Corchorus olitorius Leaf Extract on Potassium Bromate-Induced Haematological Parameters Derangement in Rats. Trop J Nat Prod Res. 2024;8(7). doi:10.26538/tjnpr/v8i7.24

Maurya NK, Arya P. Amaranthus grain nutritional benefits: A review. J. Pharmacogn Phytochem. 2018;7(2):2258-2262. https://www.phytojournal.com/archives?year=2018&vol=7&issue=2&ArticleId=3826&si=false

Alam MA, Subhan N, Hossain H. Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr Metab. 2016;13:27. doi: 10.1186/s12986-016-0080-3

Akbari B, Baghaei-Yazdi N, Bahmaie M, Mahdavi Abhari F. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors. 2022;48(3):611-633. doi: 10.1002/biof.1831

Miah MA, Mondol PP, Rahman MM, Rahman MH, Mustari A, Begum JA. Effects of Gestational Exposure to Potassium Bromate as Food Additive on Reproductive and Immunological Parameters in Mouse Offspring. J Sci Technol Res. 2024;6(1):109-116. https://doi.org/10.3329/jscitr.v6i1.77382

Shakeri F, Soukhtanloo M, Boskabady MH. The effect of hydro-ethanolic extract of Curcuma longa rhizome and curcumin on total and differential WBC and serum oxidant, antioxidant biomarkers in rat model of asthma. Iran J Basic Med Sci. 2017;20(2):155. doi:

10.22038/ijbms.2017.8241

Manasa K, Soumya R, Vani R. Phytochemicals as potential therapeutics for thrombocytopenia. J Thromb Thrombolysis. 2016;41(3):436-440. doi: 10.1007/s11239-015-1257-8

Ali SH, Obaid QA, Khairi GA. Lemon juice antioxidant activity against oxidative stress. Baghdad Sci. J. 2020;17(1 Suppl):0207. https://dx.doi.org/10.21123/bsj.2020.17.1(Suppl.).0207

Gandhi P, Samarth RM, Peter K. Bioactive compounds of amaranth (Genus Amaranthus). In: Bioactive compounds underutilized vegetables legumes. 2020;1-37. https://link.springer.com/referenceworkentry/10.1007/978-3-030-44578-2_3-1

Islam MJ, Kunzmann A, Henjes J, Slater MJ. Can dietary manipulation mitigate extreme warm stress in fish? The case of European seabass, Dicentrarchus labrax. Aquaculture. 2021;545:737153. doi: 10.1016/j.aquaculture.2021.737153

Kunnaja P, Chansakaow S, Wittayapraparat A, Yusuk P, Sireeratawong S. In vitro antioxidant activity of Litsea martabanica root extract and its hepatoprotective effect on chlorpyrifos-induced toxicity in rats. Molecules. 2021;26(7):1906. doi: 10.3390/molecules26071906