Discovering the Potential Mechanisms of Canna indica Leaves Ethanolic Extract against Plasmodium falciparum Malaria: Network Pharmacology and Molecular Docking Approach Tropical Journal of Natural Product Research

Main Article Content

Kana Mardhiyyah
Christopher K. Johan
Eurica A. N. Ravsanjani

Abstract

Malaria is a life-threatening disease caused by Plasmodium parasites and transmitted by Anopheles female mosquito. Plasmodium falciparum, one of the most common and deadliest species, accounting for more than 99% cases of malaria-associated deaths globally. Several therapy strategies which often involves quinolones and artemisin derivatives have been used. However, new challenge arises due to the exceptional adaptability of P.falciparum towards antimalarial drugs that leads to the failure of malaria therapy. This study investigates the antimalarial potential of Canna indica leaves ethanolic extract against Plasmodium falciparum using network pharmacology and molecular docking approaches. A total of 57 phytoconstituents were identified in the ethanolic extract of C. indica and were screened for pharmacokinetic properties, resulting in 46 eligible compounds for further analysis. Protein-protein interaction (PPI) network and pathway analyses identified key targets, including acetylcholinesterase (AChE), sex hormone-binding globulin (SHBG), prostaglandin-endoperoxidase synthase (PTGS2), coagulation factor X (F10), and butyrylcholinesterase (BuChE). Molecular docking results demonstrated significant binding affinities of C. indica compounds with the target proteins, including AChE, SHBG, PTGS2, F10, and SHBG along with the lowest binding affinity values of -9.2 kcal/mol, -8.6 kcal/mol, -7.8 kcal/mol, -7.7 kcal/mol, and -10.6 kcal/mol respectively. This finding suggests that C. indica possesses bioactive compounds that could serve as candidates for novel antimalarial therapeutics.

Downloads

Article Details

How to Cite
Mardhiyyah, K., Johan, C. K., & Ravsanjani, E. A. N. (2025). Discovering the Potential Mechanisms of Canna indica Leaves Ethanolic Extract against Plasmodium falciparum Malaria: Network Pharmacology and Molecular Docking Approach: Tropical Journal of Natural Product Research. Tropical Journal of Natural Product Research (TJNPR), 9(2), 702-710. https://doi.org/10.26538/tjnpr/v9i2.37
Section
Articles

References

1. Marrelli MT, Brotto M. The effect of malaria and anti-malarial drugs on skeletal and cardiac muscles. Malar J. 2016; 15:1–6. Doi: https://doi.org/10.1186/s12936-016-1577-y.

2. González-Sanz M, Berzosa P, Norman FF. Updates on malaria epidemiology and prevention strategies. Curr Infect Dis Rep. 2023; 25:131–139. Doi: https://doi.org/10.1007/s11908-023-00805-9.

3. Fikadu M, Ashenafi E. Malaria: An overview. Infect Drug Resist 2023; 16:3339–3347. Doi: https://doi.org/10.2147/IDR.S405668.

4. Varo R, Chaccour C, Bassat Q. Update on malaria. Med Clin (Barc) 2020; 155:395–402. Doi: https://doi.org/10.1016/j.medcli.2020.05.010.

5. Murugesan R, Kaleeswaran B. In silico drug discovery: Unveiling potential targets in Plasmodium falciparum. Asp. Mol. Med. 2024; 3:1-10. Doi: https://doi.org/10.1016/j.amolm.2024.100038.

6. Doshi K, Pandya N, Datt M. In silico assessment of natural products and approved drugs as potential inhibitory scaffolds targeting aminoacyl-tRNA synthetases from Plasmodium. 3 Biotech. 2020; 10:470-481. Doi: https://doi.org/10.1007/s13205-020-02460-6.

7. Anh LT, Hieu N, Trang DT, Tai BH, Kiem PV. Two new acylated sucroses from the roots of Canna indica L. and their antioxidant activity. Nat. Prod. Commun. 2021; 16(2):1-5. Doi: https://doi.org/10.1177/1934578X21991720.

8. Li L, Yang L, Yang LQ, He CR, He YX, Chen LP, Dong Q, Zhang HY, Chen SY, Li P. Network pharmacology: A bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine. Chin. Med. 2023; 18:146-164. Doi: https://doi.org/10.1186/s13020-023-00853-2.

9. Fitrianingsih AA, Santosaningsih D, Djajalaksana S, Muti’ah R, Lusida MI, Karyono SS, Prawiro, SR. Network pharmacology and in silico investigation on Saussurea lappa for viral respiratory diseases. Trop J Nat Prod Res. 2024; 8(1):5889–5896. Doi: https://doi.org/10.26538/tjnpr/v8i1.26.

10. Muti’ah R, Fitriyani, Ningrum SES, Arriziq MA. Exploring the potential of tamarillo (Cyphomandra betacea Cav) compounds for the treatment of type 2 diabetes mellitus: A network pharmacology study. Trop J Nat Prod Res. 2024; 8(10):8704–8709. Doi: https://doi.org/10.26538/tjnpr/v8i10.13.

11. Shamim S, Munawar R, Rashid Y, Qadar MZ, Bushra R, Begum I, Imran M, Quds T. Molecular Docking: An insight from drug discovery to drug repurposing approach. In: Podlipnik C (Eds.). Unraveling molecular docking – From theory to practice. London: IntechOpen; 2024. 1-33 p.

12. Kristianingsih A, Soetrisno, Reviono R, Wasita B. Molecular docking study of quercetin from ethanol extract of Mimosa pudica Linn. on asthma biomarkers. Trop J Nat Prod Res. 2024; 8(10):8640–8645. Doi: https://doi.org/10.26538/tjnpr/v8i10.4.

13. Nugraha RYB, Faratisha IFD, Mardhiyyah K, Ariel DG, Putri FF, Nafisatuzzamrudah, Winarsih S, Sardjono TW, Fitri, LE. Antimalarial properties of isoquinoline derivative from Streptomyces hygroscopicus subsp. Hygroscopicus: An in silico approach. Biomed Res Int 2020; 6135696:1-15. Doi: https://doi.org/10.1155/2020/6135696.

14. Ijoma IK, Okafor CE, Ajiwe VIE. Computational studies of 5-methoxypsolaren as potential deoxyhemoglobin s polymerization inhibitor. Trop J Nat Prod Res. 2024; 8(10):8835–8841. Doi: https://doi.org/10.26538/tjnpr/v8i10.28.

15. Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7(1):1-13. Doi: https://doi.org/10.1038/srep42717.

16. Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev. 2016; 101:89–98. Doi: https://doi.org/10.1016/j.addr.2016.05.007.

17. Adianingsih OR, Fajrin FF, Johan CK. Exploring the mechanism of Glycyrrhiza glabra and Curcuma domestica against skin photoaging based on network pharmacology. Indones J Biotechnol. 2024; 29:98–110. Doi: https://doi.org/10.22146/ijbiotech.93332.

18. Tang D, Chen M, Huang X, Zhang G, Zeng L, Zhang G, Wu S, Wang Y. SRplot: A free online platform for data visualization and graphing. PLoS One. 2023; 18:1-8. Doi: https://doi.org/10.1371/journal.pone.0294236.

19. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda S. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019; 10(1):1-10. Doi: https://doi.org/10.1038/s41467-019-09234-6.

20. Cheng X, Song Z, Wang X, Xu S, Dong L, Bai J, Li G, Zhang C. A network pharmacology study on the molecular mechanism of protocatechualdehyde in the treatment of diabetic cataract. Drug Des Devel Ther. 2021; 15:4011–4023. Doi: https://doi.org/10.2147/DDDT.S334693.

21. Xiang C, Liao Y, Chen Z, Xiao B, Zhao Z, Li A, Xia Y, Wang P, Li H, Xiao T. Network pharmacology and molecular docking to elucidate the potential mechanism of Ligusticum Chuanxiong against osteoarthritis. Front Pharmacol. 2022; 13:1–13. Doi: https://doi.org/10.3389/fphar.2022.854215.

22. Hema K, Ahamad S, Joon HK, Pandey R, Gupta D. Atomic resolution homology models and molecular dynamics simulations of plasmodium falciparum tubulins. ACS Omega. 2021; 6:17510–17522. Doi: https://doi.org/10.1021/acsomega.1c01988.

23. Bell EW, Zhang Y. DockRMSD: An open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. J Cheminform 2019; 11:40-48. Doi: https://doi.org/10.1186/s13321-019-0362-7.

24. Deshpande RR, Tiwari AP, Nyayanit N, Modak M. In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2. Eur J Pharmacol. 2020; 886:1-15. Doi: https://doi.org/10.1016/j.ejphar.2020.173430.

25. Traore K, Arama C, Medebielle M, Doumbo O, Picot S. Do advanced glycation end-products play a role in malaria susceptibility? Parasite 2016; 23:15-24. Doi: https://doi.org/10.1051/parasite/2016015.

26. Bąska P, Norbury LJ. The role of nuclear factor kappa B (NF-κB) in the immune response against parasites. Pathogens. 2022; 11:310-333. Doi: https://doi.org/10.3390/pathogens11030310.

27. Scherer EF, Cantarini DG, Siqueira R, Ribeiro EB, Braga ÉM, Honório-França AC, França EL. Cytokine modulation of human blood viscosity from vivax malaria patients. Acta Trop 2016; 158:139–147. Doi: https://doi.org/10.1016/j.actatropica.2016.03.001.

28. Otterdal K, Berg A, Michelsen AE, Patel S, Gregersen I, Sagen EL, Halvorsen B, Yndestad A, Ueland T, Langeland N, Aukrust P. Plasma levels of interleukin 27 in falciparum malaria is increased independently of co-infection with HIV: Potential immune-regulatory role during malaria. BMC Infect Dis 2020; 20:65-75. Doi: https://doi.org/10.1186/s12879-020-4783-8.

29. Sloop GD, De Mast Q, Pop G, Weidman JJ, St. Cyr JA. The role of blood viscosity in infectious diseases. Cureus. 2020; 12(2):1-11. Doi: https://doi.org/10.7759/cureus.7090.

30. Rants’o TA, van Greunen DG, van der Westhuizen CJ, Riley DL, Panayides JL, Koekemoer LL, Zyl RLV. The in silico and in vitro analysis of donepezil derivatives for Anopheles acetylcholinesterase inhibition. PLoS One 2022; 17(11):1-21. Doi: https://doi.org/10.1371/journal.pone.0277363.

31. Chougouo RDK, Nguekeu YMM, Dzoyem JP, Awouafack MD, Kouamouo J, Tane P, McGaw LJ, Eloff JN. Anti-inflammatory and acetylcholinesterase activity of extract, fractions and five compounds isolated from the leaves and twigs of Artemisia annua growing in Cameroon. Springerplus. 2016; 5(1):1525-1531. Doi: https://doi.org/10.1186/s40064-016-3199-9.

32. John L, Vijay R. Role of TAM receptors in antimalarial humoral immune response. Pathogens. 2024; 13(4):298-312. Doi: https://doi.org/10.3390/pathogens13040298.

33. Guo Y, Li Z, Cheng N, Jia X, Wang J, Ma H, Zhao R, Li B, Cai Y, Yang Q. To investigate the effects of artemisinin on inflammatory factors and intestinal microbiota in rats with ulcerative colitis based on network pharmacology. Front. Gastroenterol. 2022; 1:1-17. Doi: https://doi.org/10.3389/fgstr.2022.979314.

34 Wang X, Chen J, Zheng J. The roles of COX-2 in protozoan infection. Front. Immunol. 2023; 14:1-13. Doi: https://doi.org/10.3389/fimmu.2023.955616.

35. Riedl J, Mordmüller B, Koder S, Pabinger I, Kremsner PG, Hoffman SL, Ramharter M, Ay C. Alterations of blood coagulation in controlled human malaria infection. Malar J. 2016; 15:15-21. Doi: https://doi.org/10.1186/s12936-015-1079-3.

36. Bosak A, Opsenica DM, Šinko G, Zlatar M, Kovarik Z. Structural aspects of 4-aminoquinolines as reversible inhibitors of human acetylcholinesterase and butyrylcholinesterase. Chem Biol Interact 2019; 308:101–109. Doi: https://doi.org/10.1016/j.cbi.2019.05.024.

37 Barrientos RE, Romero-Parra J, Cifuentes F, Palacios J, Romero-Jola NJ, Paredes A, Varagas-Arana G, Simirgiotis MJ. Chemical fingerprinting, aorta endothelium relaxation effect, and enzymatic inhibition of canelo (Drimys winteri J. R. Forst. & G. Forst, (D.C) A. Gray, family Winteraceae) fruits. Foods. 2023; 12(13):2580-2598. Doi: https://doi.org/10.3390/foods12132580.