Total Sugar Content and Antioxidant Activity of Nipa Palm (Nypa fruticans) Fruit Husk Oligosaccharides Tropical Journal of Natural Product Research
Main Article Content
Abstract
Nipa palm (Nypa fruticans) is a monoecious palm widely found in Southeast Asia. The nipa palm fruit husk is a potential source of oligosaccharides that can be used as natural antioxidant agents. This study aimed to extract oligosaccharides from the nipa palm fruit husk, determine their total sugar content, and assess their antioxidant activity. The oligosaccharides were directly extracted using 80% ethanol (EtOH) or a hot water solvent (HW) and then isolated with 80% ethanol. Total sugar content was determined using the phenol-sulfuric acid method and antioxidant activity was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. The results show that the yield of EtOH (12.58±3.24%) was higher than that of the HW method (7.16±1.03%). The total sugar content of the oligosaccharides was also higher in EtOH (28.84±0.43 mg Glu.eq./g dried sample) compared to the HW method (6.04±0.36 mg Glu.eq./g dried sample). Meanwhile, antioxidant activities were approximately IC50 517.93±92.49 µg/mL (EtOH) and IC50 502.66±17.35 µg/mL (HW). Based on these data, oligosaccharides extracted from nipa palm fruit husks can be used as natural antioxidant sources and formulated as ingredients in food supplements.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1. G. D. Nugroho, M. F. Wiraatmaja, P. S. Pramadaningtyas, S. Febriyanti, N. O. R. Liza, D. Md. Naim, Y. I. Ulumuddin and A. D. Setyawan. Review: Phytochemical composition, medicinal uses and other utilization of Nypa fruticans. Intl. J. Bonorowo Wetl. 2022; 10:51-65.
2. P. Tamunaidu and S. Saka. Chemical characterization of various parts of nipa palm (Nypa fruticans). Ind. Crop. Prod. 2011; 34:1423-1428.
3. Z. Lv, H. Liu, H. Hao, F.-U. Rahman and Y. Zhang. Chemical synthesis of oligosaccharides and their application in new drug research. Eur. J. Med. Chem. 2023; 249:115164.
4. H. S. Hahm, M. Hurevich and P. H. Seeberger. Automated assembly of oligosaccharides containing multiple cis-glycosidic linkages. Nat. Commun. 2016; 7:12482.
5. Y. Hou, X. Ding and W. Hou. Composition and antioxidant activity of water-soluble oligosaccharides from Hericium erinaceus. Mol. Med. Rep. 2015; 11:3794-3799.
6. B. Zhao, X. Wang, H. Liu, C. Lv and J. Lu. Structural characterization and antioxidant activity of oligosaccharides from Panax ginseng C. A. Meyer. Int. J. Biol. Macromol. 2020; 150:737-745.
7. F. Xiong, H.-X. Liang, Z.-J. Zhang, T. Mahmud, A. S. C. Chan, X. Li and W.-J. Lan. Characterization, antioxidant and antitumor activities of oligosaccharides isolated from Evodia lepta (Spreng) Merr. by different extraction methods. Antioxidants. 2021; 10:1842.
8. A. Laurentin and C. A. Edwards. in Encyclopedia of Human Nutrition. 2013. DOI: 10.1016/b978-0-12-375083-9.00109-4, pp. 246-253.
9. K. N. Englyst, S. Liu and H. N. Englyst. Nutritional characterization and measurement of dietary carbohydrates. Eur. J. Clin. Nutr. 2007; 61: S19-S39.
10. D. M. D. L. Navarro, J. J. Abelilla and H. H. Stein. Structures and characteristics of carbohydrates in diets fed to pigs: A review. J. Anim. Sci. Biotechnol. 2019; 10:39.
11. K. Liu, L. Xie, H. Gu, J. Luo and X. Li. Ultrasonic extraction, structural characterization, and antioxidant activity of oligosaccharides from red yeast rice. Food Sci. Nutr. 2021; 10:204-217.
12. S. Tian, H. Zhang and S. Fu. Improvement of xylo-oligosaccharides dissolution from Caragana korshinskii through liquid hot water pretreatment with tiny choline chloride. Ind. Crop. Prod. 2022; 176:114418.
13. S. S. Nielsen. in Food Analysis Laboratory Manual. 2017. DOI: 10.1007/978-3-319-44127-6_14, ch. Chapter 14, pp. 137-141.
14. C. E. Okafor, I. K. Ijoma, C. A. Igboamalu, C. E. Ezebalu, C. F. Eze, J. C. Osita-Chikeze, C. E. Uzor and A. L. Ekwuekwe. Secondary metabolites, spectra characterization, and antioxidant correlation analysis of the polar and nonpolar extracts of Bryophyllum pinnatum (Lam) Oken. BioTechnologia. 2024; 105:121-136.
15. S. Sudirman, Herpandi, E. Safitri, E. F. Apriani and F. H. Taqwa, Total polyphenol and flavonoid contents and antioxidant activities of water lettuce (Pistia stratiotes) leave extracts. Food Res. 2022; 6:205-210.
16. S. Sudirman, Y. N. Sirait, A. D. Ghaisani, Herpandi, I. Widiastuti and M. Janna, Antioxidant activity of polysaccharides from water lettuce (Pistia stratiotes) leaf extract. Trop. J. Nat. Prod. Res. 2023; 7:5055-5058.
17. P. K. Bhateja, A. Kajal and R. Singh. Amelioration of Diabetes mellitus by modulation of GLP-1 via targeting alpha-glucosidase using Acacia tortilis polysaccharide in Streptozotocin-Nicotinamide induced diabetes in rats. J. Ayurveda Integr. Med. 2020; 11:405-413.
18. H. Hui and W. Gao. Physicochemical features and antioxidant activity of polysaccharides from Herba Patriniae by gradient ethanol precipitation. Arab. J. Chem. 2022; 15:103770.
19. M. Ziadi, T. Bouzaiene, S. M’Hir, K. Zaafouri, F. Mokhtar, M. Hamdi and C. Boisset-Helbert. Evaluation of the efficiency of ethanol precipitation and ultrafiltration on the purification and characteristics of exopolysaccharides produced by three lactic acid bacteria. Biomed Res. Int. 2018; 2018:1-11.
20. I. El Mannoubi. Impact of different solvents on extraction yield, phenolic composition, in vitro antioxidant and antibacterial activities of deseeded Opuntia stricta fruit. Journal of Umm Al-Qura University for Applied Sciences. 2023; 9:176-184.
21. F. Yue, J. Zhang, J. Xu, T. Niu, X. Lü and M. Liu. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method. Front. Nutr. 2022; 9:963318.
22. Y. Wang, Y. Jing, F. Leng, S. Wang, F. Wang, Y. Zhuang, X. Liu, X. Wang and X. Ma. Establishment and application of a method for rapid determination of total sugar content based on colorimetric microplate. Sugar Tech. 2016; 19:424-431.
23. F. F. de Araújo, D. de Paulo Farias, I. A. Neri-Numa and G. M. Pastore. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021; 338:127535.
24. S. Skrovankova, D. Sumczynski, J. Mlcek, T. Jurikova and J. Sochor. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015; 16:24673-24706.
25. A. Munin and F. Edwards-Lévy. Encapsulation of natural polyphenolic compounds; A review. Pharmaceutics. 2011; 3:793-829.
26. S. B. Kedare and R. P. Singh. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011; 48:412-422.
27. S. Baliyan, R. Mukherjee, A. Priyadarshini, A. Vibhuti, A. Gupta, R. P. Pandey and C.-M. Chang. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules. 2022; 27:1326.
28. D. Peshev, R. Vergauwen, A. Moglia, É. Hideg and W. Van den Ende. Towards understanding vacuolar antioxidant mechanisms: A role for fructans?. J. Exp. Bot. 2013; 64:1025-1038.
29. J. Coates. in Interpretation of Infrared Spectra: A Practical Approach, ed. R. Meyers, John Wiley & Sons Ltd., Chichester, 2000, pp. 10881-10882.
30. K. Yang, Y. Zhang, M. Cai, R. Guan, J. Neng, X. Pi and P. Sun. In vitro prebiotic activities of oligosaccharides from the by-products in Ganoderma lucidum spore polysaccharide extraction. RSC Adv. 2020; 10:14794-14802.
31. S. Saad, I. Dávila, F. Mannai, J. Labidi and Y. Moussaoui. Effect of the autohydrolysis treatment on the integral revalorisation of Ziziphus lotus. Biomass Convers. Biorefin. 2022; 15:8760.
32. S. Oscarson. in Carbohydrates. 1999. DOI: 10.1007/978-94-015-9281-9_4, ch. Chapter 4, pp. 150-186.