Aqueous Extract of Emilia praetermissa Milne-Redh. (Asteraceae) Leaf Attenuates Salt-induced Hypertension in Male Wistar Rats: Biochemical Evidence Tropical Journal of Natural Product Research

Main Article Content

Shirley O. Ebhohon
Frederick O. Obi
Ngozi P. Okolie
Fabian C. Amaechina

Abstract

Emilia praetermissa is a herb consumed for folkloric management of hypertension. However, its efficacy against hypertension has not been scientifically investigated. This study evaluated the antihypertensive effects of its aqueous leaf extract in salt-induced hypertensive male Wistar rats. Seven groups (n=6 each) were treated: Group 1 (control), Group 2 (8% NaCl for hypertension induction), Group 3 (extract alone at 100 mg/kg), Group 4 (extract before salt-loading), Group 5 (salt-loading before extract), Group 6 (salt-loading followed by captopril at 50 mg/kg), and Group 7 (salt-loading followed by hydrochlorothiazide (HCTZ) at 10 mg/kg). All treatments were administered orally by gavage daily for two weeks. Blood pressure measurements—systolic (SBP), diastolic (DBP), mean arterial pressure (MAP), and heart rate (HR)—were recorded using the tail-cuff method. The extract’s oral acute toxicity (LD50) exceeded 5000 mg/kg. At 100 mg/kg, it significantly (p ≤ 0.05) reduced blood pressure in hypertensive rats, improved liver and kidney function indices (p ≤ 0.05), lipid profiles (p ≤ 0.05), and antioxidant enzymes levels in heart tissue (p ≤ 0.05). Angiotensin II (AngII) and aldosterone (ALD) levels decreased significantly (p ≤ 0.05), while 6-keto-prostaglandin F1α increased (p ≤ 0.05). Histopathological analysis revealed that the extract improved myocardial fibrosis and reduced tunica media thickness in the heart and aorta, while also mitigating ultrastructural changes in the kidney and liver of hypertensive rats. The extract demonstrated a significant antihypertensive effect in 8% NaCl-induced hypertensive male rats. These results provide scientific support for the traditional use of Emilia praetermissa in managing hypertension.

Downloads

Article Details

How to Cite
Ebhohon, S. O., Obi, F. O., Okolie, N. P., & Amaechina, F. C. (2025). Aqueous Extract of Emilia praetermissa Milne-Redh. (Asteraceae) Leaf Attenuates Salt-induced Hypertension in Male Wistar Rats: Biochemical Evidence: Tropical Journal of Natural Product Research. Tropical Journal of Natural Product Research (TJNPR), 9(2), 568-584. https://doi.org/10.26538/tjnpr/v9i2.22
Section
Articles
Author Biography

Shirley O. Ebhohon, Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Nigeria.

Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Nigeria.

References

World Health Organization. Global status report on non-communicable diseases. Geneva: World Health Organization; 2015. ISBN: 978 92 4 156485 4.

World Health Organization. Global non-communicable diseases target: reduce high blood pressure. Bull World Health Organ [Internet]. 2016 [cited 2024 Sep 13]. Available from: http://www.who.int/beat-NCDs.

Institute for Health Metrics and Evaluation [IHME]. GBD compare data visualization [Internet]. 2020 [cited 2024 Sep 13]. Available from: http://vizhub.healthdata.org/gbd-compare.

World Health Organization. Global status report on non-communicable diseases: attaining the nine global non-communicable diseases targets; a shared responsibility. Geneva: World Health Organization; 2014. ISBN: 978 92 4 156485 4.

Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16(4):223–237.

Odili AN, Chori BS, Danladi B, Nwakile PC, Okoye IC, Abdullah U, Nwegbu MN, Zawaya K, Essien I, Sada K, Ogedengbe J, Aje A, Isiguzo GC. Prevalence, awareness, treatment and control of hypertension in Nigeria: Data from a nationwide survey 2017. Glob Heart. 2020;15(1):47.

Ahuja R, Ayala C, Tong X, Wall HK, Fang J. Public awareness of health-related risks from uncontrolled hypertension. Prev Chronic Dis. 2018;15

Arendse LB, Danser AHJ, Poglitsch M, Touyz RM, Burnett JC Jr, Llorens-Cortes C, Ehlers MR, Sturrock ED. Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure. Pharmacol Res. 2019;71(4):539–570.

de Lima RS, Silva JCS, Lima CT, de Souza LE, da Silva MB, Baladi MG, Irigoyen MC, Lacchini S. Proinflammatory role of angiotensin II in the aorta of normotensive mice. Biomed Res Int. 2019; 2019:9326896.

Clarke C, Flores-Muñoz M, McKinney CA, Milligan G, Nicklin SA. Regulation of cardiovascular remodeling by the counter-regulatory axis of the renin-angiotensin system. Future Cardiol. 2013;9(1):23–38.

Briet M, Schiffrin EL. Treatment of arterial remodelling in essential hypertension. Curr Hypertens Rep. 2013;15(1):3–9.

Katragadda S, Arora RR. Role of angiotensin-converting enzyme inhibitors in vascular modulation: beyond the hypertensive effects. Am J Ther. 2010;17(1):11–23.

Chakraborty R, Roy S. Angiotensin-converting enzyme inhibitors from plants: a review of their diversity, modes of action, prospects, and concerns in the management of diabetes-centric complications. J Integr Med. 2021;19(6):478–492.

Herman LL, Padala SA, Ahmed I, Bashir K. Angiotensin-converting enzyme inhibitors (ACEI). In: StatPearls. StatPearls Publishing; 2023.

Palombo EA. Traditional medicinal plant extracts and natural products with activity against oral bacteria: potential application in the prevention and treatment of oral diseases. Evid Based Complement Alternat Med. 2011; 2011:680354.

Bent S. Herbal medicine in the United States: review of efficacy, safety, and regulation. J Gen Intern Med. 2008;3(6):854–859.

Milne-Redhead E. Tropical African plants: XXI. Kew Bull. 1950; 5:375–376.

Hepper FN, Hutchinson J, Dalziel JM. Flora of West Tropical Africa. Vol. II. In:

Hepper FN, editor. London: Crown Agents for Overseas Governments and Administrations; 1963. p. 244–245.

Nicolson DH. Summary of cytological information on Emilia and the taxonomy of four Pacific taxa of Emilia (Asteraceae: Senecioneae). Syst Bot. 1980; 5:391–407.

Lisowski S. Le genre Emilia (Cass.) Cass. (Asteraceae) dans la Flore de Guinée (Afrique occidentale). Bull Jard Bot Natl Belg. 1997;66(3/4):201–206.

Michel J, Abd Rani NZ, Husain K. A review on the potential use of medicinal plants from Asteraceae and Lamiaceae plant family in cardiovascular diseases. Front Pharmacol. 2020;11(852):1–26.

Burkil HM. The useful plants of West Tropical Africa. Vol. 6. Kew: Royal Botanical Gardens; 2004. ISBN: 9781900347662.

Ruffo CK, Birnie A, Tengnas B. Edible wild plants of Tanzania. Nairobi: Regional Land Management Unit; 2002. ISBN: 9966-896-60-0.

Ngozi AO, Josephine OO, Felicity E. Anti-hyperlipidaemic effect of aqueous leaf extract of Emilia praetermissa Milne-Redh (Asteraceae) in rats. Int J Biosci. 2013; 3:68–77.

Sofowora A. Medicinal plants and traditional medicine in Africa. Ibadan: Spectrum Books Ltd; 1993. p. 191-289.

Harborne JB. Phytochemical methods: a guide to modern techniques of plant analysis. 2nd ed. London: Chapman and Hall; 1984. p. 288

Trease GE, Evans WC. Pharmacognosy. 15th ed. London: Saunders Publishers; 2002. p. 42-44, 221-229, 246-249, 304-306, 331-332, 391-393.

Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol. 1983; 54:275–287.

Badyal DK, Lata H, Dadhich AP. Animal models of hypertension and effect of drugs. Indian J Pharmacol. 2003;35(6):349–362.

Reitman S, Frankel S. Method of alanine and aspartate aminotransferase determination. Am J Clin Pathol. 1957; 28:56–63.

Szasz TS. The myth of mental illness: foundations of a theory of personal conduct. 2nd ed. New York: Harper & Row Publishers Incorporation; 1974.

Fawcett JK, Scott JE. A rapid and precise method for the determination of urea. J Clin Pathol. 1960;13(2):156–159.

Bartels H, Bohmer M. Quantitative determination of creatinine. Clin Chim Acta. 1972; 37:193.

Tietz NW. Fundamentals of clinical chemistry. 2nd ed. Philadelphia: WB Saunders; 1976.

Tietz NW, Pruden EL, Siggard-Anderson O. Electrolytes, blood gases and acid-base balance. In: Tietz NW, editor. Textbook of clinical chemistry. Philadelphia: WB Saunders; 1986. p. 1172–1182.

Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem. 1974;20(4):470-475.

Fossati P, Prencipe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem. 1982; 28:2077-2080.

Grove TH. Effect of reagent pH on the determination of high-density lipoprotein cholesterol by precipitation with sodium phosphotungstate-magnesium. Clin Chem. 1979; 25:560-564.

Burstein M, Scholnick HR, Morfin R. Rapid method for the isolation of lipoproteins from serum by precipitation with polyanions. Scand J Clin Lab Invest. 1980; 40:583-595.

Frieldwald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge: Clinical Chemistry manual of histology, third ed. New York; 1972.

Misra HP, Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem. 1972; 247:3170–3175.

Cohen G, Dembiec D, Marcus J. Measurement of catalase activity in tissue extracts. Anal Biochem. 1970; 34:30–38.

Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969; 27:502–522.

Flohe L, Guùzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984; 105:114–121.

Okhawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95:351–358.

Windsor L. Tissue processing. In: Wood E, editor. Laboratory histopathology: a complete reference. Vol. 1. New York: Churchill Livingstone; 1994. p. 1–42.

Ngozi AO, Josephine OO, Felicity EC. Anti-hyperlipidaemic effect of aqueous leaf extract of Emilia praetermissa Milne-Redh (Asteraceae) in rats. Int J Biosci (IJB). 2013;3(5):68-77. Available from: http://www.innspub.net.

Li S, Liu X, Chen X, Bi L. Research progress on anti-inflammatory effects and mechanisms of alkaloids from Chinese medical herbs. Evid Based Complement Alternat Med. 2020; 2020:1303524. doi:10.1155/2020/1303524.

Monteiro NO, Monteiro TM, Nogueira TSR, Cesar JR, Nascimento LPS, Campelo KA, Silveira GR, Antunes F, de Oliveira DB, de Carvalho Junior AR, Braz-Filho R, Vieira IJC. Antihypertensive activity of the alkaloid aspidocarpine in normotensive Wistar rats. Molecules. 2022;27(20):6895. doi:10.3390/molecules27206895.

Khan J, Deb PK, Priya S, Medina KD, Devi R, Walode SG, Rudrapal M. Dietary flavonoids: cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological, and therapeutic concerns. Molecules. 2021;26(13):4021. doi:10.3390/molecules26134021.

Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules. 2020;25(22):5243. doi:10.3390/molecules25225243.

Cao S, Liu M, Han Y, Li S, Zhu X, Li D, Shi Y, Liu B. Effects of saponins on lipid metabolism: the gut–liver axis plays a key role. Nutrients. 2024;16(10):1514.

doi:10.3390/nu16101514.

Chen M, Long Z, Wang Y, Liu J, Pian H, Wang L, Chen Z. Protective effects of saponin on a hypertension target organ in spontaneously hypertensive rats. Exp Ther Med. 2013;5(2):429-432. doi:10.3892/etm.2012.856.

Wu K, Fu M, Zhao Y, Gerhard E, Li Y, Yang J, Guo J. Anti-oxidant, anti-inflammatory, and antibacterial tannin-crosslinked citrate-based mussel-inspired bioadhesives facilitate scarless wound healing. Bioact Mater. 2023; 20:93-110. doi: 10.1016/j.bioactmat.2022.05.017.

Tong RC, Qi M, Yang QM, Li PF, Wang DD, Lan JP, Wang ZT, Yang L. Extract of Plantago asiatica L. seeds ameliorate hypertension in spontaneously hypertensive rats by inhibition of angiotensin converting enzyme. Front Pharmacol. 2019; 10:403. doi:10.3389/fphar.2019.00403.

Thakur S, Kumar V, Das R, Sharma V, Mehta DK. Biomarkers of hepatic toxicity: an overview. Curr Ther Res. 2024; 100:100737. doi: 10.1016/j.curtheres.2024.100737.

Abdel-Rahman RF, Hessin AF, Abdelbaset M, Ogaly HA, Abd-Elsalam RM, Hassan SM. Antihypertensive effects of Roselle-Olive combination in L-NAME-induced hypertensive rats. Oxid Med Cell Longev. 2017; 2017:9460653. doi:10.1155/2017/9460653.

Salami SA, Salahdeen HM, Rahman OC, Murtala BA, Raji Y. Oral administration of Tridax procumbens aqueous leaf extract attenuates reproductive function impairments in L-NAME induced hypertensive male rats. Middle East Fertil Soc J. 2017; 22:219-225.

Guyton AC, Hall JE. Textbook of medical physiology. 10th ed. Saunders; 2002. p. 345-356.

Jodas EM, Voltera AF, Ginoza M, Kohlmann O, Dos Santos NB, Cesaretti ML. Effects of physical training and potassium supplementation on blood pressure, glucose metabolism and albuminuria of spontaneously hypertensive rats. J Bras Nefrol. 2014; 36:271-279.

Galdino GS, Lopes AM, Franca VM, Duarte ID, Perez AC. Evaluation of exercise and potassium chloride supplementation on blood pressure and nociceptive threshold in hypertensive rats. Appl Physiol Nutr Metab. 2010; 35:184-187.

Gounden V, Bhatt H, Jialal I. Renal function tests. In: StatPearls. StatPearls Publishing; 2022.

Natochin YV. Human physiology: Water and electrolyte homeostasis. Hum Physiol. 2018; 44:239-245.

Qian Q. Salt, water and nephron: Mechanisms of action and link to hypertension and chronic kidney disease. Nephrol. 2018;23(Suppl 4):44-49.

Grillo A, Salvi L, Coruzzi P, Salvi P, Parati G. Sodium intake and hypertension. Nutrients. 2019;11(9):1970.

Davidson BA. Principles and practice of medicine. 10th ed. Churchill Livingstone; 2005.

Burton DR, Theodore WP. Mechanism of action of diuretics. UpToDate. 2007:15.1.

Ikewuchi JC, Ikewuchi CC, Onwuka FC. Effect of aqueous extract of Tridax procumbens Linn on plasma electrolytes of salt-loaded rats. Pak J Nutr. 2010;9(2):103-105.

Ofem OE, Ani EJ, Okoi OC, Effiang AU, Eno AE, Ibu JO. Viscum album (mistletoe) extract ameliorates the adverse effects of high salt load in some serum electrolytes, organ weight, and cyto-architecture in rats. Aust J Basic Appl Sci. 2010;4(12):6223-6232.

Wyszyńska J, Łuszczki E, Sobek G, Mazur A, Dereń K. Association and risk factors for hypertension and dyslipidaemia in young adults from Poland. Int J Environ Res Public Health. 2023;20(2):982.

Ariyanti R, Besral B. Dyslipidaemia associated with hypertension increases the risks for coronary heart disease: a case-control study in Harapan Kita Hospital, National Cardiovascular Center, Jakarta. J Lipids. 2019; 2019:2517013.

Balogun ME, Besong EE, Obimma JN, Iyare EE, Nwachukwu DC. Ameliorative effect of aqueous extract of Hibiscus sabdariffa (Roselle) on salt-induced hypertension in Wistar rats. PharmacologyOnLine. 2019; 2:247-258.

Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev. 2020; 159:4-33. doi: 10.1016/j.addr.2020.07.019.

Seyoum A, Asres K, El-Fiky FK. Structure–radical scavenging activity relationships of flavonoids. Phytochemistry. 2006; 67:2058–2070.

Wang M, Huang H, Wang L, Yin L, Yang H, Chen C, Zheng Q, He S. Tannic acid attenuates intestinal oxidative damage by improving antioxidant capacity and intestinal barrier in weaned piglets and IPEC-J2 cells. Front Nutr. 2022; 9:1012207. doi:10.3389/fnut.2022.1012207. Available from: https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2022.1012207.

Zreikat HH, Harpe SE, Slattum PW, Mays DP, Essah PA, Cheang KI. Effect of renin-angiotensin system inhibition on cardiovascular events in older hypertensive patients with metabolic syndrome. Metabolism. 2014;63(3):392–399.

Liu XP, Pang YJ, Zhu WW, Zhao M, Wang YB, Sun SJ, Sun SJ. Benazepril, an angiotensin-converting enzyme inhibitor, alleviates renal injury in spontaneously hypertensive rats by inhibiting advanced glycation end-product-mediated pathways. Clin Exp Pharmacol Physiol. 2009;36(3):287–296.

Pruthi D, McCurley A, Aronovitz M, Galayda C, Karumanchi SA, Jaffe IZ. Aldosterone promotes vascular remodelling by direct effects on smooth muscle cell mineralocorticoid receptors. Arterioscler Thromb Vasc Biol. 2014;34(2):355–364.

Xanthakis V, Vasan RS. Aldosterone and the risk of hypertension. Curr Hypertens Rep. 2013;15(2):102-107

Fernandes L, Fortes ZB, Casarini DE, Nigro D, Tostes RCA, Santos RAS, de Carvalho MHC. Role of PGI2 and effects of ACE inhibition on the bradykinin potentiation by angiotensin-(1-7) in resistance vessels of SHR. Regul Pept. 2005;127(1-3):183–189.

Mao S, Li C. Hypotensive and angiotensin-converting enzyme inhibitory activities of Eisenia fetida extract in spontaneously hypertensive rats. Evid Based Complement Alternat Med. 2015; 2015:349721. doi:10.1155/2015/349721.

Hosohata K, Yoshioka D, Tanaka A, Ando H, Fujimura A. Early urinary biomarkers for renal tubular damage in spontaneously hypertensive rats on a high salt intake. Hypertens Res. 2016;39(1):19-26. doi:10.1038/hr.2015.103.