Cytotoxicity of Blumea balsamifera on A549 Lung Cancer Cells: Integrating in Vitro Analysis with Computational Study of AKT-1 Inhibition
Main Article Content
Abstract
Lung cancer is the second leading cause of death worldwide, necessitating the exploration of novel therapeutic agents. This research investigates the potential of Blumea balsamifera L. extract (BBE) as an anti-lung cancer agent by examining its cytotoxic effects on A549 lung cancer cells and exploring its bioactive compounds' interactions with key target proteins involved in cancer cell growth. A549 cells were treated with BBE at concentrations of 0, 25, 50, and 100 µg/mL, and cytotoxicity was evaluated using the WST-1 assay. In silico analyses were performed, including data mining, bioactivity prediction, protein target identification, molecular docking, and molecular dynamics simulations. The results demonstrated that BBE exhibited cytotoxic activity against A549 cells, with an IC50 value of 124.92 ± 13.24 µg/mL. Computational studies supported these findings, indicating that BBE targets the AKT-1 protein, a critical regulator of cancer cell growth and survival. Among the bioactive compounds identified, rutin, eriodictyol, and ombuin showed the strongest binding affinities and stable interactions with AKT-1, suggesting their potential as anticancer agents. This study provides a comprehensive understanding of the cytotoxic effects of BBE on A549 lung cancer cells, validated through both in vitro and in silico methodologies, and highlights the potential of BBE as a promising therapeutic candidate for lung cancer treatment.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Nahar J, Boopathi V, Murugesan M, Rupa EJ, Yang DC, Kang SC, Mathiyalagan R. Investigating the Anticancer Activity of G-Rh1 Using In Silico and In Vitro Studies (A549 Lung Cancer Cells). Molecules. 2022;27(23): 8311. doi:10.3390/molecules27238311.
Suraya A, Nowak D, Sulistomo AW, Icksan AG, Berger U, Syahruddin E, Bose-O’Reilly S. Excess risk of lung cancer among agriculture and construction workers in Indonesia. Ann Glob Health. 2021;87(1): 8. doi:10.5334/aogh.3155.
Zheng M. Classification and pathology of lung cancer. Surg Oncol Clin. 2016;25(3): 447-468. doi:10.1016/j.soc.2016.02.003.
Garcia-de-Alba C. Repurposing A549 adenocarcinoma cells: new options for drug discovery. Am J Respir Cell Mol Biol. 2021;64(4): 405-406. doi:10.1165/rcmb.2021-0048ED.
Simpson KL, Stoney R, Frese KK, Simms N, Rowe W, Pearce SP, Humphrey S, Booth L, Morgan D, Dynowski M, Trapani F. A biobank of small cell lung cancer CDX models elucidates inter-and intratumoral phenotypic heterogeneity. Nat Cancer. 2020;1(4): 437-451. doi:10.1038/s43018-020-0046-2.
Girigoswami A, Girigoswami K. Potential applications of nanoparticles in improving the outcome of lung cancer treatment. Genes. 2023;14(7): 1370. doi:10.3390/genes14071370.
Islam KM, Anggondowati T, Deviany PE, Ryan JE, Fetrick A, Bagenda D, Copur MS, Tolentino A, Vaziri I, McKean HA, Dunder S. Patient preferences of chemotherapy treatment options and tolerance of chemotherapy side effects in advanced stage lung cancer. BMC cancer. 2019;19(1): 835. doi:10.1186/s12885-019-6054-x.
Xu P, Le Pechoux C. Chemoradiotherapy for stage III non-small cell lung cancer: have we reached the limit?. China Clin Oncol. 2015;4(4): 45. doi:10.3978/j.issn.2304-3865.2015.11.04.
Safarzadeh E, Shotorbani SS, Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv Pharm Bull. 2014;4(1): 421. doi:10.5681/apb.2014.062.
Sulaiman C, George BP, Balachandran I, Abrahamse H. Photoactive herbal compounds: a green approach to photodynamic therapy. Molecules. 2022;27(16): 5084. doi:10.3390/molecules27165084.
Shrihastini V, Muthuramalingam P, Adarshan S, Sujitha M, Chen JT, Shin H, Ramesh M. Plant derived bioactive compounds, their anti-cancer effects and in silico approaches as an alternative target treatment strategy for breast cancer: An updated overview. Cancers. 2021;13(24): 6222. doi:10.3390/cancers13246222.
Masyudi M, Hanafiah M, Rinidar R, Usman S, Marlina M. Phytochemical screening and GC-MS analysis of bioactive compounds of Blumea balsamifera leaf extracts from South Aceh, Indonesia. Biodiversitas. 2022;23(3): 1344-1352. doi:10.13057/biodiv/d230319.
Pang Y, Wang D, Fan Z, Chen X, Yu F, Hu X, Wang K, Yuan L. Blumea balsamifera—A phytochemical and pharmacological review. Molecules. 2014;19(7): 9453-9477. doi:10.3390/molecules19079453.
Wang J, He H, Zhou Z, Bai L, She X, He L, He Y, Tan D. Chemical constituents and bioactivities of Blumea balsamifera (Sembung): a systematic review. Food Sci Technol. 2023;43: e132322. doi:10.1590/fst.132322.
Marseti SW, Hermanto FE, Widyananda MH, Rosyadah N, Kamila FS, Annisa Y, Dwijayanti DR, Ulfa SM, Widodo N. Pharmacological potential of Clinacanthus nutans: integrating network pharmacology with experimental studies against lung cancer. J Biol Active Prod Nat. 2024;14(3): 343-358. doi:10.1080/22311866.2024.2367997.
Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compd. 2014;50: 444-457. doi:10.1007/s10593-014-1496-1.
Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014;42(1): 32-38. doi:10.1093/nar/gku293.
Ashwell MA, Lapierre JM, Brassard C, Bresciano K, Bull C, Cornell-Kennon S, Eathiraj S, France DS, Hall T, Hill J, Kelleher E. Discovery and optimization of a series of 3-(3-Phenyl-3 H-imidazo [4, 5-b] pyridin-2-yl) pyridin-2-amines: orally bioavailable, selective, and potent ATP-independent Akt inhibitors. J Med Chem. 2012;55(11): 5291-5310. doi:10.1021/jm300276x/
Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Chem Biol Methods Protocols. 2015: 243-250. doi:10.1007/978-1-4939-2269-7_19.
Krieger E, Vriend G. New ways to boost molecular dynamics simulations. J Comput Chem. 2015;36(13): 996-1007.doi:10.1002/jcc.23899.
Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11(8): 3696-3713. doi:10.1021/acs.jctc.5b00255.
Srisawat T, Chumkaew P, Heed-Chim W, Sukpondma Y, Kanokwiroon K. Phytochemical screening and cytotoxicity of crude extracts of Vatica diospyroides symington type LS. Trop J Pharm Res. 2013;12(1): 71-76. doi:10.4314/tjpr.v12i1.12.
Saewan N, Koysomboon S, Chantrapromma K. Anti-tyrosinase and anti-cancer activities of flavonoids from Blumea balsamifera DC. J Med Plants Res. 2011;5(6): 1018-1025. doi:10.5897/JMPR.9000112.
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res. 2024;43(1):313. doi:10.1186/s13046-024-03207-4.
Syahraini A, Harnelly E, Hermanto FE. Pro-Apoptosis Activity of Pogostemon cablin Benth. Against Nasopharyngeal Carcinoma through the BCL-2 Inhibition Signaling Pathway: A Computational Investigation. Makara J Sci. 2023;27(3):6. doi:10.7454/mss.v27i3.1484.
Susilo A, Cahyati M, Nurjannah N, Pranowo D, Hermanto FE, Primandasari EP. Chrysin Inhibits Indonesian Serotype Foot-and-Mouth-Disease Virus Replication: Insights from DFT, Molecular Docking and Dynamics Analyses. J Trop Biodivers Biotechnol. 2024;9(1): 83140. doi:10.22146/jtbb.83140.
Song X, Zhao X. The van der Waals interaction between protein molecules in an electrolyte solution. J Chem Phys. 2004;120(4): 2005-2009. doi:10.1063/1.1634955
Fatchiyah F, Hermanto FE, Virgirinia RP, Rohmah RN, Triprisila LF, Suyanto E, Miyajima K. Inhibition of adipocyte senescence by ferulic acid present in pigmented rice through the PPAR-γ and NF-κB protein signaling pathways. J Pharm Pharmacogn Res. 2025;13(2): 402-415. doi:10.56499/jppres24.2080_13.2.402.
Moghbeli M. PI3K/AKT pathway as a pivotal regulator of epithelial-mesenchymal transition in lung tumor cells. Cancer Cell Int. 2024;24(1): 165. doi:10.1186/s12935-024-03357-7.
Sizek H, Hamel A, Deritei D, Campbell S, Ravasz Regan E. Boolean model of growth signaling, cell cycle and apoptosis predicts the molecular mechanism of aberrant cell cycle progression driven by hyperactive PI3K. PLoS Comput Biol. 2019;15(3): e1006402.doi:10.1371/journal.pcbi.1006402.
Coloff JL, Macintyre AN, Nichols AG, Liu T, Gallo CA, Plas DR, Rathmell JC. Akt-dependent glucose metabolism promotes Mcl-1 synthesis to maintain cell survival and resistance to Bcl-2 inhibition. Cancer res. 2011;71(15): 5204-5213. doi:10.1158/0008-5472.can-10-4531.
Grille SJ, Bellacosa A, Upson J, Klein-Szanto AJ, Van Roy F, Lee-Kwon W, Donowitz M, Tsichlis PN, Larue L. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer res. 2003;63(9):2172-2178.
Zhang Y, Zhang C, Li J, Jiang M, Guo S, Yang G, Zhang L, Wang F, Yi S, Wang J, Fu Y. Inhibition of AKT induces p53/SIRT6/PARP1-dependent parthanatos to suppress tumor growth. Cell Commun Signal. 2022;20(1): 93. doi:10.1186/s12964-022-00897-1.
Li X, Fu Y, Xia X, Zhang X, Xiao K, Zhuang X, Zhang Y. Knockdown of SP1/Syncytin1 axis inhibits the proliferation and metastasis through the AKT and ERK1/2 signaling pathways in non‐small cell lung cancer. Cancer Med. 2019;8(12): 5750-5759. doi:10.1002/cam4.2448.
Zhang C, Zhao X, Wang Z, Gong T, Zhao H, Zhang D, Niu Y, Li X, Zhao X, Li G, Dong X. Dasatinib in combination with BMS-754807 induce synergistic cytotoxicity in lung cancer cells through inhibiting lung cancer cell growth, and inducing autophagy as well as cell cycle arrest at the G1 phase. Invest New Drugs. 2023;41(3): 438-452. doi:10.1007/s10637-023-01360-9.
Lal M, Bae D, Patierno S, Ceryak S. The role of Akt1 in G1/S checkpoint bypass after genotoxin exposure. Cancer Res. 2008;68(9):5583.