Evaluation of Membrane Stabilizing, Thrombolytic, Anti-Diarrheal and Antipyretic Activities of Ethanolic Extracts of Hoya Parasitica variegata and Crotalaria pallida Aiton Tropical Journal of Natural Product Research
Main Article Content
Abstract
Hoya parasitica Variegata (Apocynaceae) and Crotalaria pallida Aiton (Fabaceae)are traditionally used to treat pain, fever, and urinary disorders, but scientific1reports are limited or lacking on their antipyretic, antidiarrheal, thrombolytic, and membrane-stabilizing activities. The study evaluated the membrane-stabilizing, thrombolytic, anti-diarrheal, and antipyretic activities of crude extracts from H. parasitica and C. pallida using various animal models. In the in vitro thrombolytic test, assessing clot lysis, the extracts of H. parasitica and C. pallida showed thrombolytic activity with clot lysis of 75.93% and 73.64%, respectively, compared to streptokinase, which achieved 85.17% clot lysis. In the hypotonic buffer-induced hemolysis test, the ethanolic extracts of H. parasitica and C. pallida inhibited hemolysis of red blood cells (RBC) by 64.53%and 68.23%, respectively, which is close to the inhibition rate of acetyl salicylic acid (79.68%). Similarly, in the heat-induced hemolysis test, the extracts inhibited RBC hemolysis by 62.89% and 68.14%, compared to the 74.49% inhibition observed with acetyl salicylic acid. In the castor oil-induced diarrhea, the ethanolic extracts of H. parasitica and C. pallida leaves at doses of 100,150, and 200 mg/kg body weight significantly (P<0.05) reduced the number of diarrheal faeces compared to the negative control. Additionally, in the brewer's yeast-induced pyrexia test, these extracts at the same doses elevated temperatures in mice in a dose-dependent manner, with significant (P<0.05) reductions observed at the 21st, 22nd, and 23rd hours of treatment. These results indicate that the ethanol extracts of H. parasitica and C. pallida exhibit notable thrombolytic, membrane-stabilizing, anti-diarrheal, and antipyretic properties.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Che CT, George V, Ijinu TP, Pushpangadan P, Andrae-Marobela K. Traditional medicine. In Pharmacognosy. 2024:11-28. Academic Press. DOI: https://doi.org/10.1016/B978-0-12-802104-0.00002-0.
Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, Sun JN, Ma DL, Han YF, Fong WF, Ko KM. New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics. Evid Based Complement and Alternat Med. 2013; 2013(1):627375. http://dx.doi.org/10.1155/2013/627375
Pan SY, Litscher G, Gao SH, Zhou SF, Yu ZL, Chen HQ, Zhang SF, Tang MK, Sun JN, Ko KM. Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. Evid Based Complement and Alternat Med. 2014; 27:2014. https://doi.org/10.1155/2014/525340
Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: Current approaches and prospects. The Nucleus. 2022; 65(3):399-411. https://doi.org/10.1007/s13237-022-00405-3
Gilani AH. Trends in ethnopharmacology: Perspectives of ethnopharmacology. J Ethnopharmacol. 2005; 100(1-2):43-49. DOI: 10.1016/j.jep.2005.06.001
M.S. Uddin (2019). Nature Info. Electronic Database of Flora, Fauna, and Nature. Accessible at https://www.natureinfo.com.bd [accessed 2019-2020]. DOI: http://dx.doi.org/10.5281/zenodo.3950619
Sadhu SK, Khatun A, Ohtsuki T, Ishibashi M. Constituents from Hoya parasitica and their cell growth inhibitory activity. Planta med. 2008;74(07):760-763. DOI: 10.1055/s-2008-1074523.
Mukherjee S, Dutta PK, Chakrabarty M, Barua AK, Dan S, Dan SS. Triterpenes from Hoya parasitica. J Indian Chem Soc. 1986; 63(8):782-783.
Tu TQ, Nguyen YT, Thi Ngoc Nguyen L, Duc Nguyen H, Chu MH. Three new minor steroidal glycosides from the whole plants of Hoya parasitica (Wall. ex Hornem.) Wight. Nat Prod Res. 2023;19:1-6. DOI: https://doi.org/10.1080/14786419.2023.2261601
Alam N, Siddique W, Mishra MK, Pandey A, Purshottam DK, Singh KJ, Tewari SK, Chakrabarty D. Micropropagation of Hoya carnosa, H. kerrii, H. parasitica, and H. longifolia using tray-based floating and stationary hydroponic systems. Sci Hortic. 2023; 311:111804. 2023. DOI: https://doi.org/10.1016/j.scienta.2022.111804
Srivastava R, Narain D, Deepak D, Khare A. Isolation of a C-21 norpregnane precursor from Hoya parasitica. Nat Prod Commun. 2007; 2(11):1934578X0700201107. DOI: http://dx.doi.org/10.1177/1934578X0700201107.
Sarkar KK, Mitra T, Rahman MA, Raja IM, Aktaruzzaman M, Abid MA, Zilani MN, Roy DN. In vivo bioactivities of Hoya parasitica (Wall.) and in-silico study against cyclooxygenase enzymes. BioMed Res Int. 2022; 28:2022. DOI: https://doi.org/10.1155/2022/1331758
Rego EJ, de Carvalho DD, Marangoni S, de Oliveira B, Novello JC. Lectins from seeds of Crotalaria pallida (smooth rattlebox). Phytochem. 2002; 60(5):441-446. DOI: https://doi.org/10.1016/s0031-9422(02)00132-2
Pelegrini PB, Farias LR, Saude AC, Costa FT, Bloch C, Silva LP, Oliveira AS, Gomes CE, Sales MP, Franco OL. A novel antimicrobial peptide from Crotalaria pallida seeds with activity against human and phytopathogens. Curr microbiol. 2009; 59:400-404. DOI: https://doi.org/10.1007/s00284-009-9451-6.
Weng JR, Yen MH, Lin CN. New Pterocarpanoids of Crotalaria pallida and Crotalaria assamica. Helv chim acta. 2002; 85(3):847-851. DOI: http://dx.doi.org/10.1002/1522-2675(200203)85:33.0.CO;2-6
Ko HH, Weng JR, Tsao LT, Yen MH, Wang JP, Lin CN. Anti-inflammatory flavonoids and pterocarpanoid from Crotalaria pallida and C. assamica. Bioorg Med Chem Lett. 2004; 14(4):1011-1014. DOI: https://doi.org/10.1016/j.bmcl.2003.11.074.
Boldrin PK, Resende FA, Höhne AP, de Camargo MS, Espanha LG, Nogueira CH, Melo MD, Vilegas W, Varanda EA. Estrogenic and mutagenic activities of Crotalaria pallida measured by recombinant yeast assay and Ames test. BMC Complement Altern Med. 2013; 13(1):1-10. DOI: https://doi.org/10.1186/1472-6882-13-216.
Hu XR, Chou GX, Zhang CG. Flavonoids, alkaloids from the seeds of Crotalaria pallida and their cytotoxicity and anti-inflammatory activities. Phytochem. 2017; 143:64-71. DOI: https://doi.org/10.1016/j.phytochem.2017.07.010.
Cheng ZY, Sun Q, Yang PY, Huang XX, Song SJ. Isolation and structure elucidation of anti-tyrosinase compounds from the seeds of Crotalaria pallida. J Asian Nat Prod Res. 2021; 23(8):738-744. DOI: https://doi.org/10.1080/10286020.2020.1782386
Ukil S, Laskar S, Roy RN. Physicochemical characterization and antibacterial activity of the leaf oil of Crotalaria pallida Aiton. J Taibah Univ Sci. 2016;10(4):490-496. DOI: https://doi.org/10.1016/j.jtusci.2015.07.001.
Jahan N, Shaari K, Islam SKN, Azam ATMZ, Zohora FT * and Ahsan M. Chemical and Biological Profiling of Three Ferulic Acids Alkyl Esters Isolated from Jatropha pandurifolia (Family:
Euphorbiaceae) Stem Bark. Biomed Pharmacol J. 2023; 16(2): 817-826. DOI:https://dx.doi.org/10.13005/bpj/2664
Enechi OC, Umeh BU, Uzo CK, Gabriel EC, Ezeako EC, Iloh CV, Olisa A, Odo UJ, Okwaraji CV, Ugwuagada C. Phytochemical Composition and Anti-Inflammatory Potential of Flavonoid-Rich Fraction of Erythrina senegalensis DC (Fabaceae) Leaf. Trop J Nat Prod Res. 2022; 6(9): 1515-1522. http://www.doi.org/10.26538/tjnpr/v6i9.30
Ranasinghe P, Ranasinghe P, Abeysekera WK, Premakumara GS, Perera YS, Gurugama P, Gunatilake SB. In vitro erythrocyte membrane
stabilization properties of Carica papaya L. leaf extracts. Pharmacog Res. 2012; 4(4):196. DOI: https://doi.org/10.4103%2F0974-8490.102261
Bulbul IJ, Uddin ME, Nahar N, Kuddus MR, Haque MR. Antidiarrheal Activity of Four Different Species of Litsea Available in Bangladesh. Biomed Pharmacol J. 2021;14(3):1259-1266.v DOI: https://dx.doi.org/10.13005/bpj/2227
Rajasekaran A, Arivukkarasu R, Murugesh S. Evaluation of antipyretic activity of ethyl acetate extract of Adenema hyssopifolium G. Don in a rat model. Asian Pac J Trop Med. 2010; 3(7):523-526. DOI: https://doi.org/10.1016/S1995-7645(10)60126-5.
Watson RD, Chin BS, Lip GY. Antithrombotic therapy in acute coronary syndromes. Br Med J. 2002; 325:1348-1351. DOI: https://doi.org/10.1136/bmj.325.7376.1348.
Baruah DB, Dash RN, Chaudhari MR, Kadam SS. Plasminogen activators: a comparison. Vasc Pharmacol. 2006; 44(1):1-9. DOI: 10.1016/j.vph.2005.09.003
Keramati, M., Arabi Mianroodi, R., Memarnejadian, A., Mirzaie, A., Sazvari, S., Mehdi Aslani, M. and Roohvand, F. Towards a superior streptokinase for fibrinolytic therapy of vascular thrombosis. Cardiovasc Hematol Agents Med Chem (Formerly Current Medicinal Chemistry-Cardiovascular & Hematological Agents). 2013; 11(3):218-229. DOI: https://doi.org/10.2174/187152571103140120103816.
Nazari J, Davison R, Kaplan K, Fintel D. Adverse reactions to thrombolytic agents: implications for coronary reperfusion following myocardial infarction. Med Toxicol Adverse Drug Exp. 1987; 2:274-286. DOI: https://doi.org/10.1007/bf03259869
Jain V, Kunwar B, Verma SK. A Review on Thrombolysis Enhancing Indian Edible Plants. Biomed Pharmacol J. 2023; 16(3):1283-1302. DOI: https://dx.doi.org/10.13005/bpj/2709
Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009; 3(1):73-80. DOI: 10.2174/187221309787158371
Sjöholm A, Nyström T. Chronic inflammation can cause type 2 diabetes. Lakartidningen 2004; 101(19):1716-1721. PMID: 15188586
Cochrane CG. Cellular injury by oxidants. Am J Med. 1991; 91(3): S23-30. DOI: 10.1016/0002-9343(91)90280-B
De La Fuente R, Namkung W, Mills A, Verkman AS. Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel. Mol Pharmacol. 2008;73(3):758-768. DOI: 10.1124/mol.107.043208
Rang HP, Dale MM, Ritter JM, Moore PK. Anti-inflammatory and immunosuppressant drugs. Pharmacology 1999;5:248.