Gum Arabic-Based Microencapsulation of Delonix regia Extract and Its In Vitro Antibacterial Activity
Main Article Content
Abstract
Delonix regia is a plant species that can be easily found in Indonesia. The bioactive compounds in Delonix regia leaves have potential medicinal properties but face limitations, such as instability, which may affect their biological activity. This study aimed to microencapsulate the ethanol extract from Delonix regia leaves using gum arabic as the coating material, employing a freeze-drying process. The effect of pH, coating material concentration, and stirring duration on encapsulation efficiency was evaluated to identify optimal conditions for microcapsule formation. The antibacterial activity of the microcapsules was assessed in vitro against Escherichia coli and Salmonella typhimurium using the disc diffusion method (Kirby-Bauer). The optimum conditions for microcapsule formation were achieved at pH 5, with a coating material concentration of 4% and 30 min of stirring time, resulting in an encapsulation efficiency (%EE) of 55.00%. FTIR analysis showed shifts in wave numbers and changes in peak intensity, indicating an interaction between the core material from Delonix regia extract and the gum arabic polymer. SEM characterisation showed the microcapsules to be mostly round but irregular, with a consistent size distribution of 3-5 μm in diameter. The microcapsules exhibited antibacterial activity at 100% concentration, producing inhibition zones of 6.06 mm against Escherichia coli and 6.77 mm against S. typhimurium.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Pirmoradian M, Hooshmand T. Remineralization and antibacterial capabilities of resin-based dental nanocomposites. In Applications of nanocomposite materials in dentistry Woodhead Publishing. 2019; 1(1): 237-269.
Senge YS, Mustafa I, Safitri A. Phytochemical Screening and Antibacterial Activity of Ethanolic Extracts from Delonix regia Against Laboratory Strains of Diarrheal Bacteria. JKPK (J. Kim. Pend. Kim). 2024; 9(1): 50-68. doi:10.20961/jkpk.v9i1.85374
Gautam SS, Dwivedi S. In Vitro Evaluation of Antimicrobial Activity of Fractions of Delonix regia Leaf Extracts. Eur. J. Mol. Clin. Med. 2020; 7(11): 2961-2970.
Yusuf ATM, Shaikat MAM, Bhuiya MAM, Dutta M, Nath AK, Dash PR. Utilising the Medicinal Properties of Delonix regia for Diseases and Beyond: A Review of its Phytochemistry and Pharmacology. Trop. J. Nat. Prod. Res. 2023; 7(12): 5355-5365. doi:10.26538/tjnor/v7i12.2
Shamsudin NF, Ahmed QU, Mahmood S. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules. 2022; 27(4): 1149. doi:10.3390/molecules27041149
Buljeta I, Pichler A, Šimunović J, Kopjar M. Polysaccharides as Carriers of Polyphenols: Comparison of Freeze-Drying and Spray-Drying as Encapsulation Techniques. Molecules. 2022; 27(16): 5069. doi:10.3390/molecules27165069
Safitri A, Roosdiana A, Kurnianingsih N, Fatchiyah F, Mayasari E, Rachmawati R. Microencapsulation of Ruellia tuberosa L. Aqueous Root Extracts Using Chitosan-Sodium Tripolyphosphate and Their In Vitro Biological Activities. Scientifica. 2022; 1(1): 9522463. doi:10.1155/2022/9522463
Almadanti SA, Makmur I, Asra R, Umar S. Microencapsulation to Maintain the Activity and Stability of Drug Substances: A Review: Activity, Stability, Coacervation, Microencapsulation, Spray Drying, Solvent Evaporation. Asian J. Pharm. Res. Develop. 2020; 8(6): 73-76.
Safitri A, Roosdiana A, Hitdatania E, Damayanti SA. In Vitro Alpha-Amylase Inhibitory Activity of Microencapsulated Cosmos caudatus Kunth Extracts. Indones. J. Chem. 2022; 22(1): 212-222. doi:10.22146/ijc.68844
Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks, and applications. Food Chem. 2019; 272: 494-506. doi:10.1016/j.foodchem.2018.07.205
Bhalerao YP, Timung R, Gawai S. Optimization of Microencapsulation for Biodegradable Polymers using Response Surface Methodology. J. Mat. Sci. 2018; 5(4): 40-46. doi:10.26634/jms.5.4.13972
Al-Maqtari QA, Mohammed JK, Mahdi AA. Physicochemical properties, microstructure, and storage stability of Pulicaria jauberti extract microencapsulated with different protein biopolymers and gum arabic as wall materials. Int. J. Biol. Mac. 2021; 187: 939-954. doi:10.1016/j.ijbiomac.2021.07.180
Šturm L, Osojnik Črnivec IG, Istenič K. Encapsulation of non-dewaxed propolis by freeze-drying and spray-drying using gum arabic, maltodextrin and inulin as coating materials. Food Bioprod. Process. 2019; 116(1): 196-211. doi:10.1016/j.fbp.2019.05.008
Akdeniz B, Sumnu G, Sahin S. The effects of maltodextrin and gum arabic on encapsulation of onion skin phenolic compounds. Chem. Eng. Trans. 2017; 57: 1891-1896. doi:10.3303/CET1757316
Al-Hamayda A, Abu-Jdayil B, Ayyash M, & Tannous J. Advances in microencapsulation techniques using Arabic gum: A comprehensive review. Ind. Crops Prod. 2023; 205(4):117556–117566. doi:10.1018/j.indcrop.2023.117556
Zahara IA, Ulfa SM, Safitri A. Comparative Analysis of Different Natural Polymers as Coating Agents for Freeze-Dried Microencapsulation of Cosmos caudatus Kunth Compounds. Sci. World J. 2024; 10(1): 6833341. doi:10.1155/2024/6833341
Dadi, DW., Emire, SA., Hagos, AD., & Eun, JB. Physical and Functional Properties, Digestibility, and Storage Stability of Spray- and Freeze-Dried Microencapsulated Bioactive Products from Moringa stenopetala Leaf Extract. Ind. Crops Prod. 2020; 156(01): 112891. https://doi.org/10.1016/j.indcrop.2020.112891
Annisa C, Prasetyawan S, Safitri A. Co-microencapsulation of Ruellia tuberosa L. and Cosmos caudatus K. Extracts for Pharmaceutical Applications. Makara J. Sci. 2022; 26(2): 96-106. doi:10.7454/mss.v26i2.1334
Sanchez C, Nigen M, Mejia Tamayo V. Acacia gum: History of the future. Food Hydrocol. 2018; 78: 140-160. doi:10.1016/j.foodhyd.2017.04.008
Sa B, Mukherjee S, Roy SK. Effect of polymer concentration and solution pH on viscosity affecting integrity of a polysaccharide coat of compression coated tablets. Int. J. Biol. Macromol. 2019; 125: 922-930. doi:10.1016/j.ijbiomac.2018.12.101
Bilal S, Mohammed DI, Dewu BB, Momoh OR, Abubakar S. Refining and Characterisation of Gum arabic Using Vacuum Filtration Method for Application in Oil and Gas Drilling Fluid Formulation. J. Experimen. Res. 2016; 3(2): 73-80.
Pertiwi AK, Annisa C, Ningsih Z, Safitri A. Microencapsulation of Ruellia tuberosa L. Extracts Using Alginate: Preparation, Biological Activities, and Release. Indones. J. Chem. 2023; 23(2): 321-332. doi:10.22146/ijc.76821
Appolonia Ibekwe C, Modupe Oyatogun G, Ayodeji Esan T, Michael Oluwasegun K. Synthesis and Characterization of Chitosan/Gum Arabic Nanoparticles for Bone Regeneration. Amer. J. Master Sci. Eng. 2017; 5(1): 28-36. doi:10.12691/ajmse-5-1-4
Almayda N, Roosdiana A, Masruri M, Safitri A. Evaluation of Bioactive Compounds, Release Profiles, and Toxicity Test from Microcapsules Containing R. tuberosa L . Extracts Utilizing Gum arabic. J. Pure Appl. Chem. Res. 2024; 13: 52-62. doi:10.21776/ub.jpacr.2024.013.01.3336
Moayyedi M, Eskandari MH, Rad AHE, Ziaee E, Khodaparast MHH, Golmakani MT. Effect of drying methods (electrospraying, freeze-drying and spray drying) on survival and viability of microencapsulated Lactobacillus rhamnosus ATCC 7469. J. Funct. Foods. 2018; 40: 391-399. doi:10.1016/j.jff.2017.11.016
Tizazu A, Bekele T. A review on the medicinal applications of flavonoids from aloe species. Eur. J. Medicin. Chem. Reports. 2024;10:100135. doi:10.1016/j.ejmcr.2024.100135
Ali MA, Shallan MA, Meshrf WA, Marrez DA. Phenolic Constituents, Antioxidant and Antimicrobial Activities of Globe Artichoke (Cynara scolymus L.) Aqueous Extracts. Trop. J. Nat. Prod. Res. 2021; 5(11): 1986-1994. doi:10.26538/tjnpr/v5i11.16
Chen F, Tang H, Lin J, Kang R, Tang D, Liu J. Ciprofloxacin is a novel anti-ferroptotic antibiotic. Heliyon. 2024;10(11):e32571. doi:10.1016/j.heliyon.2024.e32571
Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem. 2018; 146: 599-612. doi:10.1016/j.ejmech.2018.01.078