Antioxidant, Anti-Melanogenesis, and Cytotoxic Effects of Clitoria ternatea (Butterfly Pea) Flower Extract on B16 Melanoma Cells

Main Article Content

Fenita Shoviantari
Tristiana Erawati
Widji Soeratri
Mahardian Rahmadi
Galang W. Permadi
Muhammad Rafibahtiyar

Abstract

Butterfly pea (Clitoria ternatea) flowers contain high levels of anthocyanins and flavonoids, functioning as natural antioxidants to combat free radicals. The antioxidant activity can prevent cell damage and inhibit melanogenesis, contributing to skin whitening by reducing melanin production. The present study investigated the antioxidant, anti-melanogenesis, and cytotoxic effects of butterfly pea flower (BPF) extract on B16 melanoma cells, aiming to explore its potential as a safer, natural alternative for skin whitening. Antioxidant properties and anti-melanogenesis potential of BPF extract were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and tyrosinase inhibition assays, respectively. The cytotoxicity of BPF extract on B16 melanoma cells was further examined using the 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results of the DPPH assay indicated that BPF extract exhibited an IC50 value of 165.10±7.78 ppm, compared to quercetin (the reference compound) with an IC50 value of 3.53±0.08, indicating moderate antioxidant potential. Butterfly pea flower extract showed an IC50 of 130.90±3.52 ppm in tyrosinase inhibition assay, indicating a weaker anti-melanogenesis effect than hydroquinone (IC50 value of 17.04±0.14 ppm). The MTT technique revealed high biocompatibility with 85% B16 melanoma cell viability at 250 ppm for BPF, compared to only 24.45% for doxorubicin at 30 ppm. These findings underscore the potential of BPF extract as a bioactive ingredient for skin care, offering moderate antioxidant activity with safe, natural anti-melanogenesis effects. The present study supports BPF’s application in cosmetic formulations aimed at skin protection and whitening, with minimized toxicity for prolonged use. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Shoviantari, F., Erawati, T., Soeratri, W., Rahmadi, M., Permadi, G. W., & Rafibahtiyar, M. (2024). Antioxidant, Anti-Melanogenesis, and Cytotoxic Effects of Clitoria ternatea (Butterfly Pea) Flower Extract on B16 Melanoma Cells . Tropical Journal of Natural Product Research (TJNPR), 8(12), 9456 – 9460. https://doi.org/10.26538/tjnpr/v8i12.15
Section
Articles
Author Biographies

Fenita Shoviantari, Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Kampus C UNAIR Jalan Mulyorejo Surabaya, Indonesia 

Departement of Pharmaceutical Science, Faculty of Pharmacy, Institut Ilmu Kesehatan Bhakti Wiyata, Jalan KH Wachid Hasyim 65 Kediri, Indonesia 

Tristiana Erawati, Departement of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Kampus C UNAIR Jalan Mulyorejo Surabaya, Indonesia 

Skin and Cosmetic Technology (SCT) Centre of Excellent, Universitas Airlangga, Nanizar Zaman Joenoes Building, Kampus C UNAIR Jalan Mulyorejo Surabaya, Indonesia 

How to Cite

Shoviantari, F., Erawati, T., Soeratri, W., Rahmadi, M., Permadi, G. W., & Rafibahtiyar, M. (2024). Antioxidant, Anti-Melanogenesis, and Cytotoxic Effects of Clitoria ternatea (Butterfly Pea) Flower Extract on B16 Melanoma Cells . Tropical Journal of Natural Product Research (TJNPR), 8(12), 9456 – 9460. https://doi.org/10.26538/tjnpr/v8i12.15

References

1. Neha K, Haider MR, Pathak A, Yar MS. Medicinal prospects of antioxidants: A review. Eur J Med Chem. 2019; 178: 687–704. doi: 10.1016/j.ejmech.2019.06.010

2. Addor FAS. Antioxidants in dermatology. A Bras Dermatol. 2017; 92(3):356–362. doi: 10.1590/abd1806-4841.20175697

3. Wenas DM, Elya B, Sutriyo, Setiwan H. Antioxidant and Tyrosinase Inhibitory Activities of Unripe and Ripe Fruit and Seed Extracts of Eugenia uniflora. Trop J of Nat Prod Res. 2024; 8(7): 7734-7739. doi: 10.26538/tjnpr/v8i7.16.

4. Thawabteh AM, Jibreen A, Karaman D, Thawabteh A, Karaman R. Skin pigmentation types, causes and treatment— A review. Molecules. 2023; 28(12):4839-4867. doi: 10.3390/molecules28124839

5. Masaki H. Role of antioxidants in the skin: Anti-aging effects. J Dermatol Sci. 2010; 58(2):85–90. doi: 10.1016/j.jdermsci.2010.03.003

6. Xekardakis D, Krueger-Krasagakis S, Krasagakis K. Hyperpigmentation. 1st ed. (Rigopoulos D, Katoulis AC. eds). CRC Press: Boca Raton; 2017; 18-20. doi: 10.1201/9781315162478.

7. Sarma DSK, Kumar D, Yamini C, Santhalahari C, Lahari C, Kumar GC. Review on Clitoria ternatea. Int J Pharm Sci Med. 2023; 8(9):43–58. doi. 10.47760/ijpsm.2023.v08i09.004

8. Ashraf K, Adlin NF, Basri AN, Ahmad W, Sultan S. The traditional uses, phytochemistry, and pharmacological effects of Clitoria ternatea: A review. Indian J Pharm Edu Res. 2023; 58(1):1–14. doi: 10.5530/ijper.58.1.1

9. Multisona RR, Shirodkar S, Arnold M, Gramza-Michalowska A. Clitoria ternatea flower and its bioactive compounds: Potential use as microencapsulated ingredient for functional foods. Applied Sci. 2023; 13(4):2134-2158. doi: 10.3390/app13042134

10. Kazuma K. Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry. 2003; 62(2):229–237. doi: 10.1016/S0031-9422(02)00486-7.

11. Nurhayati R, Shoviantari F, Erawati MT, Yuwono M. Butterfly pea (Clitoria ternatea L.) flower water and ethanol extract: Phytochemical screening, FTIR analysis, and antioxidant activity estimation using comparison of ABTS, DPPH, and FRAP assays. Res J Pharm Technol. 2024; 17(5):1973–1982. doi: 10.52711/0974-360X.2024.00313

12. Mukherjee PK, Maity N, Nema NK, Sharkar BK. Bioactive compounds from natural resources against skin aging. Phytomedicine. 2011; 19(1):64–73. doi: 10.1016/j.phymed.2011.10.003

13. Chakraborthy GS, Kumar V, Gupta S, Kumar A, Gautam N, Kumari L. Phytochemical and pharmacological aspects of Clitoria ternatea - A review. J Applied Pharm Sci Res. 2018; 1(2): 3–9. doi: 10.31069/japsr.v1i2.13061.

14. Hearing VJ. Determination of melanin synthetic pathways. J Inves Derma. 2011; 131:E8–E11. doi: 10.1038/skinbio.2011.4.

15. Briganti S, Camera E, Picardo M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 2003; 16(2):101–110. doi: 10.1034/j.1600-0749.2003.00029.x

16. Brenner M, Hearing VJ. The protective role of melanin against uv damage in human skin. Photochem Photobiol. 2008; 84(3):539–549. doi: 10.1111/j.1751-1097.2007.00226.x.

17. Hashemi-Shahri SH, Golshan A, Mohajeri SA, Baharaa J, Amini E, Salek F, Sahebkar A, Tayarani-Najaran Z. ROS-scavenging and anti-tyrosinase properties of crocetin on B16F10 murine melanoma cells. Anticancer Agents Med Chem. 2018; 18(7):1064–1069. doi: 10.2174/1871520618666171213143455.

18. Abidin Z, Khaeriah U, Pratama M, Baits M. Tyrosinase inhibitor activity measurement of crude and purified extract of moringa leaves (Moringa oleifera L.). Indo J Pharm Sci Tech. 2019; Supp (1)1: 52-58. doi: 10.24198/ijpst.v1i1.19152

19. Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. 2018; 2018(6). doi: 10.1101/pdb.prot095505.

20. Boots AW, Haenen GRMM, Bast A. Health effects of quercetin: From antioxidant to nutraceutical. Eur J Pharmacol. 2008; 585(2–3):325–337. doi: 10.1016/j.ejphar.2008.03.008.

21. Gulcin İ, Alwasel SH. DPPH radical scavenging assay. Processes. 2023; 11(8):2248-2268. doi: 10.3390/pr11082248.

22. Reveny J, Maha HL, Laila L. A Comparative study of phytochemical screening and DPPH radical scavenging activity of Ficus carica Linn. leaves extracts. Trop J Nat Prod Res. 2023; 7(2):2337–2340. doi: 10.26538/tjnpr/v7i2.5.

23. Rudzińska A, Juchaniuk P, Oberda J, Wiśniewska J, Wojdan W, Szklener K, Mańdziuk S. Phytochemicals in cancer treatment and cancer prevention—Review on epidemiological data and clinical trials. Nutrients. 2023; 15(8):1896-1930. doi: 10.3390/nu15081896.

24. Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry. 2000; 55(6):481–504. doi: 10.1016/S0031-9422(00)00235-1.

25. Dej-adisai S, Koyphokaisawan N, Wattanapiromsakul C, Nuankaew W, Kang T, Pitakbut T. In vitro, in vivo, and in silico analyses of molecular anti-pigmentation mechanisms of selected Thai rejuvenating remedy and bioactive metabolites. Molecules. 2023; 28(3):958. doi: 10.3390/molecules28030958.

26. Chang T-S. An updated review of tyrosinase inhibitors. Int J Mol Sci. 2009; 10(6):2440–2475. doi: 10.3390/ijms10062440.

27. Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury A. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2019; 34(1):279–309. doi: 10.1080/14756366.2018.1545767

28. Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci. 2021; 22(23):12827-12857. doi: 10.3390/ijms222312827

29. Tang SM, Deng XT, Zhou J, Li QP, Ge XX, Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed Pharm. 2020; 121:109604-109611. doi: 10.1016/j.biopha.2019.109604

30. Choi MH, Yang SH, Kim DS, Kim N, Shin H, Liu K. Novel quercetin derivative of 3,7-dioleylquercetin shows less toxicity and highly potent tyrosinase inhibition activity. Int J Mol Sci. 2021; 22(8):4264-4284. doi: 10.3390/ijms22084264

31. Akindele A, Palmer E. Effects of hydroethanolic leaf extract of Ipomoea asarifolia (Convolvulaceae) in doxorubicin and isoproterenol-induced toxicity in rats. Trop J Nat Prod Res. 2018; 2(2):59–66. doi: 10.26538/tjnpr/v2i2.2