Demethylzeylasteral from Costus dubius (Afzel.) K. Schum Leaves Inhibits Cyclooxygenase (COX-2) In vitro
Main Article Content
Abstract
One of the widely studied plant families is the costaceae family also called “Spiral Ginger Family”, known to contain bioactive compounds. However, Costus dubius (Afzel.) K. Schum., a member of this family, has not yet been explored for its potential bioactivity. Through a series of chromatographic separations and purification, demethylzeylasteral, a potential analgelsic compound, was isolated from the sub-fractions of the hexane extract of C. dubius leaves. It inhibited both COX-2 with an IC50 of 77.97 ± 14.05 μM and COX-1 with an IC50 of 158.90 ± 16.00 μM in a concentration-dependent manner. These results demonstrate that demethylzeylasteral is more selective against COX-2 than COX-1, which is desirable because COX-2 is the enzyme targeted for pain and inflammation while inhibition of COX-1 is associated with maintaining gastrointestinal integrity. This is the first report on the COX-1 and COX-2 inhibitory activity of demethylzeylasteral.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Falodun A. Harnessing the Significance of Natural Products for Diseases and Beyond. Trop. J. Nat. Prod. Res. 2017; 1(1):1. https://doi:10.26538/tjnpr/v1i1.1
Newman DJ, Cragg GM, Snader KM. Natural Products as Sources of New Drugs over the Period 1981−2002. J . Nat. Prod. 2003; 66(7):1022–1037. https://doi:10.1021/np030096l
Jachak, S. Cyclooxygenase Inhibitory Natural products: current status. Curr. Med. Chem. 2006; 13(6):659–678. doi:10.2174/092986706776055698
Yuan G, Wahlqvist M, He G, Yang M, Li D. Natural products and anti-inflammatory activity. Asia Pac J Clin Nutr. 2006; 15(2):143-152. PMID: 16672197
Ali AS, Nageye YA, Bello KE. Potential Therapeutic Effects of Flavonoid-Rich Extract of Carica Papaya Against Inflammation, Pain, and Pyrexia in Experimental Animals. Trop. J. Nat. Prod. Res. 2004; 8(8):8138-8143. https://doi:10.26538/tjnpr/v8i8.33
A. Murtala A, J. Akindele, A, A. Oreagba I. Anticonvulsant, Muscle Relaxant and In-Vitro Antioxidant Activities of Hydroethanol Leaf Extract of Costus afer Ker Gawl (Costaceae) in Mice. Trop. J. Nat. Prod. Res. 2020; 4(5):195-202. https://doi:10.26538/tjnpr/v4i5.3
A. Akinwumi I, A. Sonibare M, T. Salami A. Effects of Costus afer Extract in Mouse Models of Anxiety and Depression and Its Possible Mechanisms of Action. Trop. J. Nat. Prod. Res. 2022; 6(4):654-660. https://doi:10.26538/tjnpr/v6i4.30
Jimoh AA, Maiha BB, Chindo BA, Ejiofor JI, Ehinmidu JO, Atang DA, Azi JY. In vitro Antiplasmodial Activity of Methanol Stem Extract of Costus afer Ker Gawl. (Costaceae) and its Residual Aqueous Fraction Against Some Drug-sensitive and Drug-resistant Plasmodium falciparum Strains. Trop. J. Nat. Prod. Res. 2023; 3(5):162-169. https://doi:10.26538/tjnpr/v3i5.3
Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011; 31(5):986–1000. https://doi:10.1161/atvbaha.110.207449
Frölich J. A classification of NSAIDs according to the relative inhibition of cyclooxygenase isoenzymes. Trends Pharmacol Sci. 1997; 18(1):30–34. https://doi:10.1016/s0165-6147(96)01017-6
Sundari S, Mas’ud A, Sari, DRT. Molecular Docking Discovered Potential of Cyclooxygenase – 2 Inhibitor Activity of Oily Compounds of Walnuts. Trop. J. Nat. Prod. Res. 2022; 6(12), 1947-1952. doi:10.26538/tjnpr/v6i12.8
N. Primiani, C, R.T. Sari D, C. Krisnamurti G, Pujiati P, A. Setiawan M. Anti-Inflammatory Potentials of Elaeocarpus sphaericus Schum Fruit Compounds by Molecular Docking Approach. Trop. J. Nat. Prod. Res. 2022; 6(10):1663-1669. https://doi:10.26538/tjnpr/v6i10.18
Joel OO, Maryann UC, Idowu OJ, Eziuzo OS, Okpala EO. Prostaglandin Synthesis Inhibitory Activity of Heliotropium indicum L. (Boraginaceae) and HPLC-DAD Analysis. Trop. J. Nat. Prod. Res. 2023; 7(10):4973-4979. https://doi:10.26538/tjnpr/v7i10.38
Sweilam SH, Abdel Bar FM, ElGindi OD, El- Sherei MM, Abdel-Sattar EA. Chemical and In Vitro Anti-inflammatory Assessment of Echinops erinaceus. Trop. J. Nat. Prod. Res. 2021; 5(4):715-719. https://doi:10.26538/tjnpr/v5i4.20
Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020b; 180:114147. https://doi:10.1016/j.bcp.2020.114147
Guevara AP, Alvero RGY, Villones LB, eds. Tuklas Lunas Protocols for Drug Discovery and Development. DOST Manual 2B. 2021; 130-150.
Jo M, Nakamura N, Kakiuchi N, Komatsu K, Qui M, Shimotohno K, Shimotohno K, Hattori M. Inhibitory effect of Yunnan traditional medicines on hepatitis C viral polymerase. J. Nat. Med., 2006; 60(3):217–224. https://doi:10.1007/s11418-006-0041-7
Granados-Guzmán G, Castro-Rios R, De Torres NW, Salazar-Aranda R. Optimization and Validation of a Microscale In vitro Method to Assess α-Glucosidase Inhibition Activity. Curr. Anal. Chem. 2018; 14(5):458–464. https://doi:10.2174/1573411013666170911154755
Yoo J, Kim NY, Seo JM, Kim S, Lee SY, Kim SK, Kim HD, Lee SW, Kim MR. Inhibitory effects of mulberry fruit extract in combination with naringinase on the allergic response in IgE-activated RBL-2H3 cells. Int. J. Mol. Med. 2013; 33(2):469–477. https://doi:10.3892/ijmm.2013.1590
Hunter D, Chai C, Barr GA. Effects of COX inhibition and LPS on formalin induced pain in the infant rat. Dev. Neurobiol. 2014; 75(10):1068–1079. https://doi:10.1002/dneu.22230
Gierse JK, McDonald JJ, Hauser SD, Rangwala SH, Koboldt CM, Seibert K. A Single Amino Acid Difference between Cyclooxygenase-1 (COX-1) and −2 (COX-2) Reverses the Selectivity of COX-2 Specific Inhibitors. J. Biol. Chem. 1996; 271(26):15810–15814. https://doi:10.1074/jbc.271.26.15810
Chandrasekharan N, Simmons, DL. The cyclooxygenases. Genome Biol. 2004; 5(9):241. https://doi:10.1186/gb-2004-5-9-241
Huss U, Ringbom T, Perera P, Bohlin L, Vasänge M. Screening of Ubiquitous Plant Constituents for COX-2 Inhibition with a Scintillation Proximity Based Assay. J. Nat. Prod. 2002; 65(11):1517–1521. https://doi:10.1021/np020023m
Tao X, Lipsky PE. THE CHINESE ANTI-INFLAMMATORY AND IMMUNOSUPPRESSIVE HERBAL REMEDY TRIPTERYGIUM WILFORDII HOOK . F. Rheum Dis Clin North Am. 2000; 26(1):29–50. https://doi:10.1016/s0889-857x(05)70118-6
Brinker AM, Ma J, Lipsky PE, Raskin I. Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochem. 2007. 68(6):732–766. https://doi:10.1016/j.phytochem.2006.11.029
Li F, Cheng X, Liang X, Wang X, Xue B, He Q, Wang X, Han J. Neurotrophic and Neuroprotective Effects of Tripchlorolide, an Extract of Chinese Herb Tripterygium wilfordii Hook F, on Dopaminergic Neurons. Exp. Neurol. 2003; 179(1):28–37. https://doi:10.1006/exnr.2002.8049
Blanco A, Blanco G. Chapter 8 – Enzymes. In A. Blanco, & G. Blanco. (Eds.) Medical Biochemistry. 2017; 153–175. https://doi:10.1016/b978-0-12-803550-4.00008-2
Zhang K, Fu G, Pan G, Li C, Shen L, Hu R, Zhu S, Chen Y, Cui H. Demethylzeylasteral inhibits glioma growth by regulating the miR-30e-5p/MYBL2 axis. Cell Death Dis. 2018; 9(10). https://doi:10.1038/s41419-018-1086-8
Zhao Y, He J, Li J, Peng X, Wang X, Dong Z, Zhao E, Liu Y, Wu Z, Cui H. Demethylzeylasteral inhibits cell proliferation and induces apoptosis through suppressing MCL1 in melanoma cells. Cell Death Dis. 2017; 8(10):e3133. https://doi:10.1038/cddis.2017.529
Hu Q, Yang C, Wang Q, Zeng H, Qin W. Demethylzeylasteral (T-96) Treatment Ameliorates Mice Lupus Nephritis Accompanied by Inhibiting Activation of NF-κB Pathway. PLoS One. 2015; 10(7):e0133724. https://doi:10.1371/journal.pone.0133724