Chemical Composition, In vivo Antihelmintic, and Acute Toxicity Studies of Buchholzia coriacea Engler (Capparaceae) Seed Extract
Main Article Content
Abstract
Parasitic illnesses are widespread in tropical Africa due to the conducive climatic and sanitary circumstances that facilitate their transmission. Given the constraints of synthetic medicine, it is necessary to revert to phytotherapy. Phytochemical analysis, antihelmintic, and acute toxicity investigations were conducted on extracts of Buchholzia coriacea (BC) engl. seeds. These extracts were evaluated on Heligmosomoides bakeri. The air-dried and pulverized seeds of BC were extracted with methanol by cold maceration and concentrated using a rotary evaporator. Quantitative phytochemical screenings of the crude seed powder and the methanol extract were performed. Antihelmintic activity was assessed through total worm count reduction (TWCR). In vivo acute toxicity studies of crude seed powder and methanol seed extracts of BC were performed. The phytochemical analysis revealed a significant concentration of flavonoids (13.04 ± 0.02%). Results obtained from the in vivo antihelmintic study revealed a reduction in total worm count from 2.50 ± 0.00, 16.75 ± 0.01, 8.59 ± 0.01, 17.97 ± 0.00, and 0.00 ± 0.00% in day 0 to 100.00 ± 0.00% in day 18 for methanol, ethyl acetate, n-hexane, chloroform, and diethyl ether, respectively, against H.bakeri, compared to abendazole, which showed TWCR from 3.75 ± 0.00% in day 0 to 100.00 ± 0.00% in day 6. The acute toxicity assessment revealed an LD50 value of 5000 mg/kg. The results emphasize the therapeutic possibilities of BC seeds as a natural source of bioactive compounds with antihelmintic activities. This highlights the need for more research to explore their potential use in pharmaceutical applications.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Idris OA, Wintola OA, Afolayan AJ. Helminthiases; prevalence, transmission, host-parasite interactions, resistance to common synthetic drugs, and treatment. Heliyon, 2019; 5(1): e01161. doi: 10.1016/j.heliyon.2019.e01161
2. Ikpeazu OV, Otuokere IE, Igwe KK. Gas chromatography–mass spectrometric analysis of bioactive compounds present in ethanol extract of Combretum hispidum (Laws) (Combretaceae) root. Comm Phy Sci. 2020; 5(3): 325-337. https://doi.org/10.1186/1746-4269-2-43.
3. Kwekowe CG, Johnbull EO, Otuokere IE. Isolation and
Characterization of Secondary Metabolite from the Stem Bark Extract of Allophylus africanus Beauv (Sapindaceae). J. Chem Soc Nig. 2021; 46(2):382 – 392
4. Ikpeazu OV, Otuokere IE, Igwe KK. GC–MS Analysis of Bioactive Compounds Present in Ethanol Extract of Combretum hispidum (Laws)(Combretaceae) leaves. Int J.Trd in Sci Res Dev. 2020; 4(5):307-313. http://dx.doi.org/10.52155/ ijpsat.v21.2. 2001
5. Anyanwu BC, Akoh OU, Otuokere IE. Phytochemical screening and proximate analysis of the leaves of Launaea (Lactuca) taraxacifolia. J. Chem Soc Nig. 2022; 47(2): 421-432
6. Egbucha JN, Johnbull OE, Igwe OU, Otuokere IE. Isolation and Characterization of a Novel Tertiary Substituted Amine from the Leaves of Sarcophrynium brachystachys. Trop J Nat Prod Res. 2023; 7(7): 3502 – 3507. Doi: 10.266538/tjnpr -/v7i7
7. Anyanwu BC, Otuokere IE, Echeme JO, Akoh OU, Njoku CP, Ohenhen ON, Ikeadim OC. Isolation and characterization of a secondary metabolite from the aerial parts of launaea (lactuca) taraxacifolia. J. Chem Soc Nig. 2021; 46(4) 0661 – 0672
8. Nwankwo CI, Omeh YN, Omodamiro OD, Otuokere IE, Alaebo PO, Atasie OC, Ekwuribe GA. Phenolics of Abelmoschus esculentus Pods: HPLC identification and in silico studies to identify potential anti-inflammatory agents. Trop J Nat Prod Res. 2022; 6(8):1311-1319 doi.org/10.26538/tjnpr/v6i8.25
9. Otuokere IE, Akoh OU, Echeme JO, Nwadire FC, Nwankwo CI, Egbucha JN, Ammasai K. GC-MS Analysis and molecular docking studies to identify potential SARS-CoV-2 nonstructural protein inhibitors from Icacina trichantha oliv tubers. Trop J Nat Prod Res. 2022; 6 (8):1336-1342
10. Adelere IA, Lateef A, Aboyeji DO, Abdulsalam R, Adabara NU, Bala JD. Biosynthesis of silica nanoparticles using aqueous extract of Buchholzia coriacea (wonderful kola) seeds and their antimicrobial activities. Annals Food Sci Techn. 2017; 18(4): 671- 679.
11. Enechi OC, Okagu IU, Amah CC, Ononiwu PC, Igwe JF, Onyekaozulu CR, Flavonoid-rich extract of Buchholzia coriacea Engl. seeds reverses Plasmodium berghei-modified haematological and biochemical status in mice, Sci Afri. 2021; 12 e00748, https://doi.org/10.1016/j.sciaf.2021.e00748.
12. Fakoya A, Olusola A. Transcriptional evaluation of antioxidant and anti-infammatory potential of Buchholzia coriacea in acetaminophen-induced sub-chronic renal and hepatic toxicity. J. Biochem Analy Stud. 2020; 4(3): 1-10. dx.doi.org/10.16966/2576-5833.124
13. Obembe OO (2021) Buchholzia coriacea (wonderful kola) seeds induce male reproductive toxicity by suppressing the pituitary-gonadal axis in Wistar rats. Braz J. Pharm Sci. 2021; 57:e19016.
14. Anadozie SO, Aduma AU, Adewale OB. Alkaloid-rich extract of Buchholzia coriacea seed mitigate the efect of copper-induced toxicity in Drosophila melanogaster, Vegetos, 2024; 37: 460–468 https://doi.org/10.1007/s42535-023-00760-9
15. Yadav A. Buchholzia coriacea: An often neglected African plant with multifarious ethnopharmacotherapeutic potentials. Int J. Pharm Sci Med. 2021; 6(7): 14-24. https://doi.org/10.47760/ijpsm.2021.v06i07.002
16. Enechi OC, Okeke ES, Isiogugu ON, Umeh BU, Eze CG, Emecheta SC, Ezeorba TP, Izuchukwu C, Agbo NC, Ugwu L, Iloh CV. Evaluation of the anti-inflammatory and antioxidant properties of flavonoid-rich seed extract of Buchholzia coriacea Engler (Capparaceae). Trop J Nat Prod Res. 2022; 6(10): 1727-1732. http://www.doi.org/10.26538/tjnpr/v6i10.29
17. Ikpeazu OV, Otuokere IE, Igwe KK. Preliminary Studies on the Secondary Metabolites of Buchholzia coriacea (Wonderful Kola) Seed Ethanol Extract by GC-MS Analysis. Int J. Res Eng Appl, 2017; 7(3): 17-26.
18. Ajaiyeoba EO, Onocha PA, Olarenwaju OT. In vitro anthelmintic properties of Buchholzia coriacea and Gynandropsis gynandra extracts. Pharm Bio. 2001; 39(3): 217-220.
19. Egbucha JN, Victor EC, Benjamin NNC, Obikee MC, Aniezi JN, Otuokere IE. Phytochemical, Anti-inflammatory, Antioxidant, Toxicity and Antimicrobial Activities of Sarcophrynium brachystachys (Benth) K. Shum Leaves. Comm Phy Sci. 2024; 11(2): 316 – 331.
20. Yondo J, Komtangi MC, Wabo JP, Bilong CFB, Kuiate R, Mpoame M. Nematicidal efficacy of methanol/methylene chloride extract of Rauwolfia vomitoria (Apocynacea) on Heligmosomoides bakeri (Nematoda, Heligmosomatidae) parasite of the white mouse (Mus musculus). J. Med. Plant Res. 2013; 7(34): 3220-3225.
21. Akomas SC, Ijioma SN, Emelike CU. In vivo and In vitro spasmolytic effect of Ficus sur Forssk ethanol leaf extract on the gastrointestinal tract. British Biotechn J. 2014; 4(11): 1182-1190.
22. Heinrich M, Mah J, Amirkia V. Alkaloids Used as Medicines: Structural Phytochemistry Meets Biodiversity-An Update and Forward Look. Mol. 2021; 26(7):1836. https://doi.org/10.3390/molecules26071836.
23. Adamski Z, Blythe LL, Milella L, Bufo SA. Biological Activities of Alkaloids: From Toxicology to Pharmacology. Toxins (Basel). 2020; 12(4):210. https://doi.org/10.3390/toxins12040210.
24. Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules (Basel, Switzerland), 2022; 27(9): 2901. https://doi.org/10.3390/molecules27092901
25. Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, Ahmed J, Shahid M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front Ag Neurosci. 2019; 11:155. https://doi.org/10.3389/fnagi.2019.00155
26. Kumavath R, Paul S, Pavithran H, Paul MK, Ghosh P, Barh D, Azevedo V. Emergence of Cardiac Glycosides as Potential Drugs: Current and Future Scope for Cancer Therapeutics. Biomol. 2021; 11(9):1275. https://doi.org/ 10.3390/biom11091275.
27. Pillerová M, Borbélyová V, Hodosy J, Riljak V, Renczés E, Frick KM, Tóthová Ľ. On the role of sex steroids in biological functions by classical and non-classical pathways. An update. Front Neuroendocrinol. 2021; 62:100926. https://doi.org/ 10.1016/j.yfrne.2021.100926.
28. Xu M, Wan Z, Yang X. Recent Advances and Applications of Plant-Based Bioactive Saponins in Colloidal Multiphase Food Systems. Mol. 2021; 26(19): 6075. https://doi.org/10.3390/molecules26196075.
29. Kaczmarek B. Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials-A Minireview. Materials (Basel). 2020; 13(14): 3224. https://doi.org/10.3390/ma13143224.
30. Kamran S, Sinniah A, Abdulghani MAM, Alshawsh MA. Therapeutic potential of certain terpenoids as anticancer agents: A scoping review. Cancers, 2022; 14:1100. https://doi.org/10.3390/cancers14051100
31. Rahman MM, Rahaman MS, Islam MR, Rahman F, Mithi FM, Alqahtani T, Almikhlafi MA, Alghamdi SQ, Alruwaili AS, Hossain MS, Ahmed M, Das R, Emran TB, Uddin MS. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Mol. 2021; 27(1): 233. doi: 10.3390/molecules27010233.
32. Pujol A, Sanchis P, Grases F, Masmiquel L. Phytate intake, health and disease: “let thy food be thy medicine and medicine be thy food. Antioxid. 2023; 12(1): 146. https://doi.org/10.3390/antiox12010146
33. Githiori JB, Höglund J, Waller PJ, Baker RL. Evaluation of anthelminthic properties of extracts from some plants used as livestock dewormers by pastoralist and smallholder farmer in Kenya against Heligmosomoïdes polygyrus infections in mice. Veter parasit. 2003; 118(3-4): 215–226. https://doi.org/10.1016/j.vetpar.2003.10.006
34. Erharuyi O, Itakpe E, Osemwota OF, Falodun A. Antioxidant Evaluation, Acute Toxicity Screening and Heavy Metal Analysis of a Poly Herbal Mixture. ChemSearch J. 2022; 13 (1): 111–119.
35. Bioquest, AAT Inc. Quest Database™ Hydrogen cyanide Toxicity (LD50). AAT Bioquest. 2024; https://www.aatbio.com/resources/toxicity-lethality-median-dose-td50-ld50/hydrogen-cyanide.