Comparative Cytotoxicity and Green Synthesis of Silver Nanoparticles from Sansevieria cylindrica

Main Article Content

Andhavarapu V. S. K. Bhavani
Annammadevi G Sayam

Abstract

The synthesis of silver nanoparticles (AgNPs) using phytochemicals is increasingly recognized for its biocompatibility and therapeutic potential. This study explores the green synthesis of AgNPs using Sansevieria cylindrica extract and compares their antioxidant activities and cytotoxicity against MCF-7, HeLa, SKOV3 and HUVEC cell lines. The hydroalcoholic extract of S. cylindrica was analysed for phytochemical content and AgNP synthesis and characterised by UV-Vis and FT-IR spectroscopy, SEM, zeta potential, and particle size analyzer. The green synthesis of AgNPs was optimized by varying concentrations of AgNO3 and extract at different temperatures and times. The synthesized NP was confirmed by UV-visible spectrophotometry, with a distinct peak at 425 nm, characteristic of AgNPs. FT-IR analysis revealed the presence of functional groups from the extract that stabilized the nanoparticles. SEM imaging demonstrated mostly spherical nanoparticle sizes (100 nm). Zeta potential analysis indicated moderate stability (-24.3 mV), and particle size analysis revealed a broad distribution, with a dominant population around 127.37 nm and some larger aggregates, suggesting room for optimisation of the synthesis process. The AgNPs exhibited significantly higher cytotoxic effects against the cancer cell lines (MCF-7, HeLa, and SKOV3) than the crude extract, with reduced toxicity towards non-cancerous HUVEC cells. The total phenolic and flavonoid contents were quantified, affirming its antioxidant capacity. The findings suggest that AgNPs synthesised from S. cylindrica are more effective and safer for cancer treatment, emphasising the potential of phytochemical-mediated nanoparticle synthesis in medical applications.

Downloads

Download data is not yet available.

Article Details

How to Cite
Bhavani, A. V. S. K., & Sayam, A. G. (2024). Comparative Cytotoxicity and Green Synthesis of Silver Nanoparticles from Sansevieria cylindrica. Tropical Journal of Natural Product Research (TJNPR), 8(11), 9104 – 9110. https://doi.org/10.26538/tjnpr/v8i11.19
Section
Articles

How to Cite

Bhavani, A. V. S. K., & Sayam, A. G. (2024). Comparative Cytotoxicity and Green Synthesis of Silver Nanoparticles from Sansevieria cylindrica. Tropical Journal of Natural Product Research (TJNPR), 8(11), 9104 – 9110. https://doi.org/10.26538/tjnpr/v8i11.19

References

Blackadar CB. Historical review of the causes of cancer. World J Clin Oncol. 2016; 7(1):54-86.

Parsa N. Environmental factors inducing human cancers. Iran J Public Health. 2012; 41(11):1-9.

Sujatha E, Meraj F. Phytochemical profile, antioxidant and cytotoxic activities of aquatic weed Landoltia punctata (G. Mey.) Les & D.J. Crawford. Ann Phytomed. 2023; 12(1):1-6. http://dx.doi.org/10.54085/ap.2023.12.1.33.

Pravalika K, Sujatha E. Phytochemical investigation, antioxidant and cytotoxic potential of Dracaena reflexa Lam. Int J Biol Pharm Allied Sci. 2021; 10(9):698-708. http://dx.doi.org/10.31032/IJBPAS/2021/10.9.1054.

Muz B, Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015; 11(3):83-92. doi: 10.2147/HP.S93413.

Gao X, Liu J, Cho KB, Kedika S, Guo B. Chemopreventive agent 3,3′-Diindolylmethane inhibits MDM2 in colorectal cancer cells. Int J Mol Sci. 2020; 21(13):4642. https://doi.org/10.3390/ijms21134642.

Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics 2023. CA Cancer J Clin. 2023; 73:17–48.

Nikolaou V, Stratigos AJ. Adjuvant treatment in advanced melanoma: How far have we come? J Eur Acad Dermatol Venereol. 2023; 37(5):851-

852. 10.1111/jdv.19010.

Usman M, Khan WR, Yousaf N, Akram S, Murtaza G, Kudus KA, Ditta A, Rosli Z, Rajpar MN, Nazre M. Exploring the phytochemicals and anticancer potential of the members of Fabaceae family: A comprehensive review. Molecules. 2022; 27(12):3863. doi:

10.3390/molecules27123863.

Venugopal S, Sudheer KD, Nilanjana B, Ashish K, Tulika C. Phytochemical investigation and antimutagenic potential of ethanolic extracts of Emblica officinalis, Terminalia chebula and Terminalia bellirica. Nat Prod J. 2019; 9(1):1-7.

Vijayan R, Joseph S, Mathew B. Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif Cells Nanomed Biotechnol. 2018; 46(4):861-871. doi: 10.1080/21691401.2017.1345930.

Padalia H, Chanda S. Synthesis of silver nanoparticles using Ziziphus nummularia leaf extract and evaluation of their antimicrobial, antioxidant, cytotoxic and genotoxic potential (4-in-1 system). Artif Cells Nanomed Biotechnol. 2021; 49(1):354-366. doi: 10.1080/21691401.2021.1903478.

Raslan MA, Melek FR, Said AA, Elshamy AL, Umeyama A, Mounier MM. New cytotoxic dihydrochalcone and steroidal saponins from the aerial parts of Sansevieria cylindrica Bojer ex Hook. Phytochem Lett. 2017; 22:39–43.

Shewale S, Undale V, Bhalchim V, Desai S, Shelar M, Padole S, Chitlange S, Wawale V, Parekh S, Pujari P Evaluation and assessment of the acute toxic potential of Sansevieria cylindrica and Plumeria obtusa plant extracts in Wistar albino rats. J Nat Remedies. 2022; 22(2):209–220. https://doi.org/10.18311/jnr/2022/28768.

Dewatisari WF, To’bungan N. Biological activity and phytochemistry of Dracaena angolensis Welw. ex Carrière. Plant Sci Today. 2023; 10(4):206-214.

Aye MM, Aung HT, Thu ZM, Sein MM, Takaya Y, Komori Y, Clericuzio M, Vidari G. Constituents of the rhizomes of Sansevieria cylindrica. Nat Prod Commun. 2018; 13:1129-1132. doi: 10.1177/1934578X1801300908.

Aung HT, Aye MM, Thu ZM, Komori Y, Sein MM, Vidari G, Bioactive constituents from the rhizomes of Sansevieria cylindrica. Rec Nat Prod. 2020; 14:269-275. doi: 10.25135/rnp.160.19.10.1440.

Tanveer A, Singh ND, Khan MF. Phytochemical analysis, total phenolic content of Sansevieria cylindrica leaves extract. Herb Med. 2017; 3(2):1-6.

Ahamad T, Singh D, Khan MF. Phytochemical analysis, total phenolic content, antioxidant and antidiabetic activity of Sansevieria cylindrica leaves extract. J Nat Prod Resour. 2017; 3(2):134–6. https://doi.org/10.21767/2472-0151.100026.

Mahalakshmi TV, Sujatha E, Ramadevi B. Total phenolic content, flavonoid content, and antioxidant activity of Alternanthera ficoidea (L.) P. Beauv. Int J Biol Pharm Allied Sci. 2021; 10(9):453-460.

Saidulu A, Sujatha E, Jhansi RG, Karunakar S. Investigating Cocculus hirsutus and Calycopteris floribunda for antioxidant and antiulcer therapy: A comparative study. Bull Environ Pharmacol Life Sci. 2023: 12(4):122-126.

Harborne JB. Phytochemical methods. Chapman Hall, London New York. 1984; pp. 49-188.

Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants. 2019; 8(496).

Sudheer KD, Rama MRT. Antioxidant and nephroprotective activity of flavonoid-rich fraction of Alphonsea sclerocarpa Thw. Int J Pharm Sci Drug Res. 2021; 13(4):384-394.

Abbagoni S, Edupuganti S, Rani G. Phytochemical and antioxidant screening of Cocculus hirsutus and Calycopteris floribunda. Int J Health Sci. 2021; 5(S1):576–584. https://doi.org/10.53730/ijhs.v5nS1.13642.

Sudheer KD, Rama MRT. Antioxidant activity and hepatoprotective potential of flavonoid-rich content of Alphonsea sclerocarpa leaves. Int J Pharm Res. 2021; 13(3):1309-1318.

Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013; 21(2):143-152.

Marcocci JJ, Marguire MT, Droy-lefaiz L. The nitric oxide scavenging properties of Ginkgo biloba extract. Biochem Biophys Res Commun. 1994; 201:748-755.

Ala AA, Olotu BB, Ohia CMD. Assessment of cytotoxicity of leaf extracts of Andrographis paniculata and Aspilia africana on murine cells in vitro. Arch Basic Appl Med. 2018; 6(1):61-65.

Sowmyya T, Vijaya LG. Spectroscopic investigation on catalytic and bactericidal properties of biogenic silver nanoparticles synthesized using Soymida febrifuga aqueous stem bark extract. J Environ Chem Eng. 2018; 6(3):3590-3601. http://dx.doi.org/10.1016/j.jece.2017.01.045.

Johnson H, Joy Prabu. Green synthesis and characterization of silver nanoparticles by leaf extracts of Cycas circinalis, Ficus amplissima, Commelina benghalensis and Lippia nodiflora. Int Nano Lett. 2015; 5:43–51. http://dx.doi.org/10.1007/s40089-014-0136-1.

Devadiga A, Shetty KV, Saidutta MB. Timber industry waste-teak (Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles. Int Nano Lett. 2015; 5:205–214. http://dx.doi.org/10.1007/s40089-015-0157-4.

Kordy MGM, Abdel-Gabbar M, Soliman HA, Aljohani G, BinSabt M, Ahmed IA, Shaban M. Phyto-capped Ag nanoparticles: Green synthesis, characterization, and catalytic and antioxidant activities. Nanomaterials (Basel). 2022; 12(3):373. doi: 10.3390/nano12030373.

Callegari A, Tonti D, Chergui M. Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett. 2003; 3:1565–1568. doi: 10.1021/nl034757a.