Methods for Quantification of Tannins and Other Polyphenols in Syzygium cumini (L.) Bark for Potential Use in Leather Tanning Colouration
Main Article Content
Abstract
Most tanneries still use chromium as a tanning agent, specifically Cr(III), because of the their hydrothermal stability and excellent physical properties. However, the use of these synthetic dyes generates waste that is hazardous to the environment, especially the oxyanions of chromate and some Cr(VI) salts. Due to this, there is a growing interest in natural dyes that produce environment-friendly products, hence the search for vegetable tannins. This study attempts to determine whether the tanning parameters of Syzygium cumini (L.) (S. cumini) bark are sufficient to add to the list of the known vegetable tanning sources. To assess this, a methanolic extract was analysed for the total polyphenol content (TPC), tannin content, and tannin-to-non-tannin ratio. For the measurement of TPC, a colourimetric method utilising Folin-Ciocalteu reagent and pyrogallic acid reference solution was employed. Quantification was done using UV-Vis at 760 nm, and this revealed a TPC of 48.6%. Also, the method validation was tested and proven suitable, with an acceptable linearity from 12.81 – 27.45 μg/mL, and a LOD of 0.44 μg/mL. Moreover, the tanning strength based on the tannins/non-tannin ratio was determined via the total soluble content (TSC) and Stiasny number of the extract, with the assay showing an acceptable tanning strength of 3.21 for S. cumini (L.), with high non-tannin content. These results indicate the potential viability of using the S. cumini (L.) bark extracts for tanning purposes, hence useful as a viable vegetable tanning material for the potential production of chromium-free leathers from sustainable resources.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Kishor R, Purchase D, Saratale G. D, Saratale R. G, Ferreira L. F. R, Bilal M, Chandra R, Bharagava R. N. Ecotoxicological and Health Concerns of Persistent Coloring Pollutants of Textile Industry Wastewater and Treatment Approaches for Environmental Safety. J. Environ. Chem. Eng. 2021; 9(2): 105012, https://doi.org/10.1016/j.jece.2020.105012.
Imron M. F, Kurniawan S. B, Soegianto A, Wahyudianto F. E. Phytoremediation of Methylene Blue Using Duckweed (Lemna Minor). Heliyon 2019; 5(8): e02206. https://doi.org/10.1016/j.heliyon.2019.e02206.
Ramesh R. R, Javid M. A, Ponnuvel M, Rathinam A. Sustainable Utilization of Agro-Industrial Waste for the Production of Chromium Tanning Agent through Redox Synthesis for Leather Industry: A Circular Economy Approach. Biomass Convers. Biorefinery 2022. https://doi.org/10.1007/s13399-022-03305-3.
Arellano-Sánchez M. G, Devouge-Boyer C, Hubert-Roux M, Afonso C, Mignot M. Chromium Determination in Leather and Other Matrices: A Review. Crit. Rev. Anal. Chem. 2022; 52(7): 1537–1556. https://doi.org/10.1080/10408347.2021.1890545.
Fei Y, Liu C. Detoxification and Resource Recovery of Chromium-Containing Wastes. In Environmental Materials and Waste; Elsevier, 2016; pp 265–284. https://doi.org/10.1016/B978-0-12-803837-6.00012-3.
Sharma P, Singh S. P, Parakh S. K, Tong Y. W. Health Hazards of Hexavalent Chromium (Cr (VI)) and Its Microbial Reduction. Bioengineered 2022; 13(3): 4923–4938. https://doi.org/10.1080/21655979.2022.2037273.
Wilbur S, Abadin H, Fay M. Toxicological Profile for Chromium; Atlanta Georgia, 2002. https://doi.org/10.1201/9781420061888_ch63.
China C. R, Maguta M. M, Nyandoro S. S, Hilonga A, Kanth, S. V, Njau K. N. Alternative Tanning Technologies and Their Suitability in Curbing Environmental Pollution from the Leather Industry: A Comprehensive Review. Chemosphere 2020; 254: 126804. https://doi.org/10.1016/j.chemosphere.2020.126804.
Ofosu F. K, Daliri E. B. M, Elahi F, Chelliah R, Lee B. H, Oh D. H. New Insights on the Use of Polyphenols as Natural Preservatives and Their Emerging Safety Concerns. Front. Sustain. Food Syst. 2020; 4(12): 525810. https://doi.org/10.3389/fsufs.2020.525810.
Rajha H. N, Paule A, Aragonès G, Barbosa M, Caddeo C, Debs E, Dinkova R, Eckert G. P, Fontana A, Gebrayel P, Maroun R. G, Napolitano A, Panzella L, Pasinetti G. M, Stevens J. F, Schieber A, Edeas M. Recent Advances in Research on Polyphenols: Effects on Microbiota, Metabolism, and Health. Mol. Nutr. Food Res. 2022; 66(1): 1–11. https://doi.org/10.1002/mnfr.202100670.
Kostić A, Milinčić D. D, Gašić U. M, Nedić N, Stanojević S. P, Tešić Ž. L, Pešić M. B. Polyphenolic Profile and Antioxidant Properties of Bee-Collected Pollen from Sunflower (Helianthus Annuus L.) Plant. LWT 2019; 112:108244. https://doi.org/10.1016/j.lwt.2019.06.011.
Musa A, Abu M. L, Lawal A. B, Uthman A. Soil Amendment with Graded Levels of Craseonycteris Thonglongyai Compost on the Concentrations of Some Phytotoxins in the Leaf of Cnidoscolus Aconitifolius (Tree Spinach). Trop. J. Nat. Prod. Res. 2022; 6(2): 265–269. https://doi.org/10.26538/tjnpr/v6i2.15.
Sari L.M, Wulandari D, Bustami A, Subita G. P, Auerkari E.I. Tannin Screening, Phenolic Compounds Analysis, and Antiproliferative Activity of Areca Nut Extract by Decreasing Ki-67 Protein in Oral Squamous Carcinoma Cell Lines. Trop. J. Nat. Prod. Res. 2020; 4(9): 563–570. https://doi.org/10.26538/tjnpr/v4i9.12.
Wan M. L. Y, Co V. A, El-Nezami H. Dietary Polyphenol Impact on Gut Health and Microbiota. Crit. Rev. Food Sci. Nutr. 2021; 61(4): 690–711. https://doi.org/10.1080/10408398.2020.1744512.
Sharifi-Rad M, Anil Kumar N. V, Zucca P, Varoni E. M, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou P. V, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy M. E, Polito L, Iriti M, Martins N, Martorell M, Docea A. O, Setzer, W. N, Calina D, Cho W. C, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020; 11: 1–21. https://doi.org/10.3389/fphys.2020.00694.
Fraga-Corral M, García-Oliveira P, Pereira A. G, Lourenço-Lopes C, Jimenez-Lopez C, Prieto M. A, Simal-Gandara J. Technological Application of Tannin-Based Extracts. Molecules 2020; 25(3): 1–27. https://doi.org/10.3390/molecules25030614.
Dhawale P. V, Vineeth S. K, Gadhave R. V, Fatima M. J. J, Supekar M. V, Thakur V. K, Raghavan P. Tannin as a Renewable Raw Material for Adhesive Applications: A Review. Mater. Adv. 2022; 3(8): 3365–3388. https://doi.org/10.1039/D1MA00841B.
Eckardt J, Sepperer T, Cesprini E, Šket P, Tondi G. Comparing Condensed and Hydrolysable Tannins for Mechanical Foaming of Furanic Foams: Synthesis and Characterization. Molecules 2023; 28(6): 2799. https://doi.org/10.3390/molecules28062799.
Kavitha V. U, Kandasubramanian, B. Tannins for Wastewater Treatment. SN Appl. Sci. 2020; 2(6): 1081. https://doi.org/10.1007/s42452-020-2879-9.
Tangarfa M, Semlali Aouragh Hassani N, Alaoui A. Behavior and Mechanism of Tannic Acid Adsorption on the Calcite Surface: Isothermal, Kinetic, and Thermodynamic Studies. ACS Omega 2019; 4(22): 19647–19654. https://doi.org/10.1021/acsomega.9b02259.
Melo L. F. M. de, Aquino-Martins V. G. Q, Silva A. P, Oliveira Rocha H. A, Scortecci K. C. Biological and Pharmacological Aspects of Tannins and Potential Biotechnological Applications. Food Chem. 2023; 414: 135645. https://doi.org/10.1016/j.foodchem.2023.135645.
Wang A, Hou J, Xu Q, Wu J, Xing B. Green Synthesis of Zero Valent Iron Using Tannins to Activate Persulfate for Sulfamethoxazole Degradation. Environ. Pollut. 2023; 336: 122418. https://doi.org/10.1016/j.envpol.2023.122418.
China C. R, Nyandoro S. S, Munissi J. J. E, Maguta M. M, Meyer M, Schroepfer M. Tanning Capacity of Tessmannia Burttii Extracts: The Potential Eco-Friendly Tanning Agents for the Leather Industry. J. Leather Sci. Eng. 2021; 3(13): 1-9. https://doi.org/10.1186/s42825-021-00055-2.
Carlqvist K, Arshadi M, Mossing T, Östman U. B, Brännström H, Halmemies E, Nurmi J, Lidén G, Börjesson P. Life-Cycle Assessment of the Production of Cationized Tannins from Norway Spruce Bark as Flocculants in Wastewater Treatment. Biofuels, Bioprod. Biorefining 2020; 14(6): 1270–1285. https://doi.org/10.1002/bbb.2139.
Kumar Das A, Nazrul Islam M, Omar Faruk M, Ashaduzzaman M, Dungani R, Rosamah E, Hartati S, Rumidatul A. Hardwood Tannin: Sources, Utilizations, and Prospects. In Tannins - Structural Properties, Biological Properties and Current Knowledge; IntechOpen, 2020. https://doi.org/10.5772/intechopen.86003.
China C. R, Hilonga A, Nyandoro S. S, Schroepfer M, Kanth S. V, Meyer M, Njau K. N. Suitability of Selected Vegetable Tannins Traditionally Used in Leather Making in Tanzania. J. Clean. Prod. 2020; 251: 119687. https://doi.org/10.1016/j.jclepro.2019.119687.
Kumari N, Kumar M, Chaudhary N, Zhang B, Radha, Chandran D, Joshi S, Singh D, Dey A, Rajalingam S, Natarajan K, Muthukumar M, Mohankumar P, Sheri V, Dhumal S, Lorenzo J. M. Exploring the Chemical and Biological Potential of Jamun (Syzygium Cumini (L.) Skeels) Leaves: A Comprehensive Review. Chem. Biodivers. 2023; 20(9): e202300479. https://doi.org/10.1002/cbdv.202300479.
Ahmed R, Tariq M, Hussain M, Andleeb A, Masoud M. S, Ali I, Mraiche F, Hasan A. Phenolic Contents-Based Assessment of Therapeutic Potential of Syzygium Cumini Leaves Extract. PLoS One 2019; 14(8): e0221318. https://doi.org/10.1371/journal.pone.0221318.
Surana K, Idris M. G, Bhattacharya B. Natural Dye Extraction from Syzygium Cumini and Its Potential Photovoltaic Application as Economical Sensitizer. Appl. Nanosci. 2020; 10(10): 3819–3825. https://doi.org/10.1007/s13204-020-01452-5.
Periyasamy A. P. Natural Dyeing of Cellulose Fibers Using Syzygium Cumini Fruit Extracts and a Bio-Mordant: A Step toward Sustainable Dyeing. Sustain. Mater. Technol. 2022; 33: e00472. https://doi.org/10.1016/j.susmat.2022.e00472.
Mariselvam R, Ranjitsingh A. J. A, Mosae Selvakumar P, Krishnamoorthy R, Alshatwi A. A. Eco Friendly Natural Dyes from Syzygium Cumini (L) (Jambolan) Fruit Seed Endosperm and to Preparation of Antimicrobial Fabric and Their Washing Properties. Fibers Polym. 2017; 18(3): 460–464. https://doi.org/10.1007/s12221-017-1097-6.
Shamsheer H. B, Mughal T. A, Ishaq A, Zaheer S, Zahid K. Extraction of Ecofriendly Leather Dyes from Plants Bark. Pakistan J. Sci. Ind. Res. Ser. A Phys. Sci. 2017; 60(2): 96–100. https://doi.org/10.52763/PJSIR.PHYS.SCI.60.2.2017.96.100.
Elgailani I. E. H, Ishak C. Y. Determination of Tannins of Three Common Acacia Species of Sudan. Adv. Chem. 2014; 2014: 1–5. https://doi.org/10.1155/2014/192708.
Sousa T. B, Souza S. G, Franco T. B. B, Silva de Jesus M, Mori F. A. Quantification of Tannins from Curupay Bark. Floresta e Ambient. 2019; 26(1): e20160082. https://doi.org/10.1590/2179-8087.008216.
Al-Ogaili N. A, Al-Jaboury I. S, Yaseen Mohammed Hasan Z. Qualitative and Quantitative Determination of Total Phenols in Achillea Tenuifolia Lam. Results Chem. 2023; 5: 100931. https://doi.org/10.1016/j.rechem.2023.100931.
Blainski A, Lopes G, de Mello J. Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules 2013; 18(6): 6852–6865. https://doi.org/10.3390/molecules18066852.
Migliato K. F, Carvalho E. S. de, Sacramento L. V. S. do, Mello J. C. P. de, Baby A. R, Velasco M. V. R, Salgado H. R. N. Total Polyphenols from Syzygium Cumini (L.) Skeels Fruit Extract. Brazilian J. Pharm. Sci. 2009; 45(1): 121–126. https://doi.org/10.1590/S1984-82502009000100015.
International Conference Harmonisation. ICH Guideline M10 on Bioanalytical Method Validation Step 2B. Sci. Med. Heal. 2019; 44, 6/7-20/40-41/49-57.
Tychinkin I. V, Shishlov O. F, Glukhikh V. V, Stoyanov O. V, Kolpakova M. V. The Effect of Lignin on the Reactivity of Phenol-Formaldehyde Resin and Properties of a Thermal-Insulation Material Based on It. Polym. Sci. Ser. D 2023; 16(2): 239–244. https://doi.org/10.1134/S1995421223020454.
Antony A, Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022; 12(4): 2107. https://doi.org/10.3390/app12042107.
Akram M, Cerin E, Lamb K. E, White S. R. Modelling Count, Bounded and Skewed Continuous Outcomes in Physical Activity Research: Beyond Linear Regression Models. Int. J. Behav. Nutr. Phys. Act. 2023; 20(1): 57. https://doi.org/10.1186/s12966-023-01460-y.
Guangcheng Z, Yunlu L, Yazaki Y. Extractives Yields, Stiasny Values and Polyflavanoid Contents in Barks from Six Acacia Species in Australia. Aust. For. 1991; 54(3): 154–156. https://doi.org/10.1080/00049158.1991.10674572.
Tahir P. M, Musgrave O. C, Ashaari, Z. Determination of Polyphenolic Content of Bark Extracts for Wood Adhesives. Holzforschung 2002; 56(3): 267–272. https://doi.org/10.1515/HF.2002.044.
Stark P. Errors In Regression. University of California, Berkeley. https://www.stat.berkeley.edu/~stark/SticiGui/Text/regressionErrors.htm (accessed 2024-09-25).
Barwick V. Preparation of Calibration Curves: A Guide to Best Practice; 2003.
OLS diagnostics: Influential data tests. APTECH. https://www.aptech.com/resources/tutorials/econometrics/ols-diagnostics-influential-data-tests/ (accessed 2024-09-25).
The Pennsylvania State University. Identifying Outliers (Unusual Y Values). The Pennsylvania State University. https://online.stat.psu.edu/stat462/node/172/ (accessed 2024-09-25).
Cleophas T. J, Zwinderman A. H. Quantile-Quantile Plots, a Good Start for Looking at Your Medical Data (50 Cholesterol Measurements and 58 Patients). In Machine Learning in Medicine – A Complete Overview; Ton J. Cleophas, A. H. Z., Ed.; Springer International Publishing: Cham, 2020; pp 319–327. https://doi.org/10.1007/978-3-030-33970-8_43.
Wang C.-C, Lee W.-C. Evaluation of the Normality Assumption in Meta-Analyses. Am. J. Epidemiol. 2020; 189(3): 235–242. https://doi.org/10.1093/aje/kwz261. Generalized Least Squares; Madrid, Spain, 2012.
Calculate Variance-Covariance Matrix for a Fitted Model Object. https://rdrr.io/r/stats/vcov.html (accessed 2024-09-25).
Blainski A, Lopes G, De Mello J. Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules 2013; 18(6): 6852–6865. https://doi.org/10.3390/molecules18066852.
Chamnansilpa N, Aksornchu P, Adisakwattana S, Thilavech T, Mäkynen K, Dahlan W, Ngamukote S. Anthocyanin-Rich Fraction from Thai Berries Interferes with the Key Steps of Lipid Digestion and Cholesterol Absorption. Heliyon 2020; 6(11): e05408. https://doi.org/10.1016/j.heliyon.2020.e05408.
Li X, Li W, Chen F, Xiao J, Liao X, Hu X, Ji J, Ma L. Guideline for Measurement of Condensed Tannin. Food Front. 2023; 4(1): 533–541. https://doi.org/10.1002/fft2.174.
Kuria N. A. Evaluation of Tanning Strength and Quality of Leathers, University of Kenya, Nairobi, Kenya, 2015.
Azadeh M, Gorovits B, Kamerud J, MacMannis S, Safavi A, Sailstad J, Sondag P. Calibration Curves in Quantitative Ligand Binding Assays: Recommendations and Best Practices for Preparation, Design, and Editing of Calibration Curves. AAPS J. 2018; 20(1): 22.
https://doi.org/10.1208/s12248-017-0159-4.
Broekaert J. A. C, Harris D. C. Quantitative Chemical Analysis, 9th Ed. Anal. Bioanal. Chem. 2015; 407(30): 8943–8944. https://doi.org/10.1007/s00216-015-9059-6.
de Souza S. V. C, Junqueira R. G. A Procedure to Assess Linearity by Ordinary Least Squares Method. Anal. Chim. Acta 2005; 552(1–2): 25–35. https://doi.org/10.1016/j.aca.2005.07.043.
Mugedo J. Z. A, Waterman P. G. Sources of Tannin: Alternatives to Wattle (Acacia Mearnsii) among Indigenous Kenyan Species. Econ. Bot. 1992; 46(1): 55–63. https://doi.org/10.1007/BF02985254.
Moursi A. I. N. Using Some Plants and Their Crude Extracts In Leather Tanning, Alexandria University, Alexandria, Egypt, 2011, pp. 1-102