Synthesis, Characterization, and Anticancer Evaluation of Thiourea Benzamide Derivatives and their Cu(II) and Pt(IV) Complexes Against PC3 and HepG2 Cancer Cell Lines
Main Article Content
Abstract
Thiourea derivatives have attracted attention for their pharmaceutical potential due to their diverse biological activities, including anticancer properties against various cancer types. The present study focused on the synthesis, characterization, and anticancer evaluation of thiourea benzamide derivatives and their Cu(II) and Pt(IV) complexes against human prostate cancer (PC3) and human liver cancer (HepG2) cell lines. Two thiourea benzamide ligands, N-([4-chlorophenyl]carbamothioyl)-4-fluorobenzamide (L1) and N-([4-chlorophenyl]carbamothioyl)-4-methoxybenzamide (L2) were synthesized through nucleophilic substitution reactions. Their corresponding copper and platinum complexes were also prepared and characterized. In vitro cytotoxicity was evaluated against PC3 and HepG2 cancer cell lines using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Molecular docking studies were performed to assess binding affinities to cancer-related proteins. Computational analyses, using density functional theory (DFT) were conducted to provide theoretical insights into the geometrical structures. The synthesis of thiourea benzamide derivatives and their Cu(II) and Pt(IV) complexes resulted in several structurally characterized compounds with distinct spectral properties. Anticancer evaluations revealed that the Cu-based complex ([Cu(L2)₂].2H₂O) exhibited moderate activity against PC3 and HepG2 cell lines and the Pt-based complex ([Pt(L2)₂Cl₂].H₂O) demonstrated significantly lower efficacy against PC3 but showed promising effects against HepG2. Molecular docking indicated stronger interactions of the Pt complex with target proteins, highlighting its potential as a more effective inhibitor than the ligands and Cu complex. These findings underscore the therapeutic potential of thiourea derivatives and their metal complexes in anticancer drug development, suggesting further exploration into their mechanism of action and application in targeted therapies.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
1. Saeed A, Mustafa MN, Zain-ul-Abideen M, Shabir G, Erben MF, Flörke U. Current developments in chemistry, coordination, structure and biological aspects of 1-(acyl/aroyl)-3-(substituted) thioureas: advances continue. J Sulfur Chem. 2019;40(3):312-350.
2. Kirishnamaline G, Magdaline JD, Chithambarathanu T, Aruldhas D, Anuf AR. Theoretical investigation of structure, anticancer activity and molecular docking of thiourea derivatives. J. Mol. Struct. 2021;1225:129118.
3. Salvador-Gil D, Herrera RP, Gimeno MC. Catalysis-free synthesis of thiazolidine--thiourea ligands for metal coordination (Au and Ag) and preliminary cytotoxic studies. Dalton Trans, 2023, 52(23): 7797-7808.
4. Karakucs S., Rollas S. Synthesis and antituberculosis activity of new N-phenyl-N′-[4-(5-alkyl/arylamino-1, 3, 4-thiadiazole-2-yl) phenyl] thioureas. Il Farmaco. 2002;57(7):577-581.
5. Shakeel A, Altaf AA, Qureshi AM, Badshah A. Thiourea derivatives in drug design and medicinal chemistry: A short review. J drug des med chem. 2016;2(1):10.
6. Singh V, Singh S, Verma A, Choudhary RR, Gupta S. Synthesis, characterization and solid state conductivity of nitro-phenol-benzaldehyde urea based ligand and trithiocarbonate. Mater. Today. Proc. 2022;51:496-501.
7. Faihan AS, Al-Jibori SA, Hatshan MR, Al-Janabi AS. Antibacterial, spectroscopic and X-ray crystallography of newly prepared heterocyclic thiourea dianion platinum (II) complexes with tertiary phosphine ligands. Polyhedron. 2022;212:115602.
8. Chen WH, Mi JX. A new redox-based approach for synthesizing a mixed-valence hybrid polymolybdate uncommonly bicapped by Cr (III) coordination complexes. Polyhedron. 2015;85:117-123.
9. Faidallah HM, Al-Mohammadi MM, Alamry KA, Khan KA. Synthesis and biological evaluation of fluoropyrazolesulfonylurea and thiourea derivatives as possible antidiabetic agents. J. Enzyme Inhib. Med. Chem. 2016;31(sup1):157-163.
10. Lourenço, A. L., Saito, M. S., Dorneles, L. E. G., Viana, G. M., Sathler, P. C., de Sequeira Aguiar, L. C., De Pádula, M., Domingos, T. F. S., Fraga, A. G. M., Rodrigues, C. R., and others. Synthesis and antiplatelet activity of antithrombotic thiourea compounds: biological and structure-activity relationship studies. Molecules. 2015;20(4):7174-7200.
11. Sanna, G., Madeddu, S., Giliberti, G., Piras, S., Struga, M., Wrzosek, M., Kubiak-Tomaszewska, G., Koziol, A. E., Savchenko, O., Lis, T., and others, Synthesis and biological evaluation of novel indole-derived thioureas. Molecules. 2018;23(10):2554.
12. Javadzade, T., Rzayeva, I., Demukhamedova, S., Akverdieva, G., Farzaliyev, V., Sujayev, A., and Chiragov, F. Synthesis, structural analysis, DFT study, antioxidant activity of metal complexes of N-substituted thiourea. Polyhedron. 2023;231:116274.
13. Zahra U, Saeed A, Fattah TA, Flörke U, Erben MF. Recent trends in chemistry, structure, and various applications of 1-acyl-3-substituted thioureas: a detailed review. RSC.advances. 2022;12(20):12710-12745.
14. Ray DA, Baniasadi M, Graves JE, Greenwood A, Farnaud S. Thiourea leaching: an update on a sustainable approach for gold recovery from E-waste. J. Sustain. Metall. 2022;8(2):597-612.
15. Raza, M. A., Javaid, K., Farwa, U., Javaid, A., Yaseen, M., Maurin, J. K., Budzianowski, A., Iqbal, B., and Ibrahim, S., One pot efficient synthesis of 1, 3-di (Naphthalen-1-yl) thiourea; X-ray structure, hirshfeld surface analysis, density functional theory, molecular docking and in-vitro biological assessment. J. Mol. Struct. 2023;1271:133989.
16. Khan E, Khan S, Gul Z, Muhammad M. Medicinal importance, coordination chemistry with selected metals (cu, Ag, au) and Chemosensing of Thiourea derivatives. A review. Crit. Rev. Anal. Chem. 2021;51(8):812-834.
17. González DLN, Saeed A, Shabir G, Flörke U, Erben MF. Conformational and crystal structure of acyl thiourea compounds: The case of the simple (2, 2-dimethyl-propionyl) thiourea derivative. J. Mol. Struct. 2020;1215:128227.
18. Al-Abbassi AA, Kayed SF, Kassim MB. Spectral, theoretical, physicochemical and corrosion inhibition studies of ortho-, meta-and para-hydroxyphenyl-benzoylthiourea ligands. Inorg. Chem. Commun. 2023;156:111155.
19. Muhammad, M., Khan, S., Shehzadi, S. A., Gul, Z., Al-Saidi, H. M., Kamran, A. W., and Alhumaydhi, F. A.. Recent advances in colorimetric and fluorescent chemosensors based on thiourea derivatives for metallic cations: A review. Dyes Pigm. 2022;205:110477.
20. Muhammed RA, Abdullah BH, Rahman HS. Synthesis, cytotoxic, antibacterial, antioxidant activities, DFT, and docking of novel complexes of Palladium (II) containing a thiourea derivative and diphosphines. J. Mol. Struct. 2024;1295:136519.
21. Swaminathan S, Jerome P, Deepak RJ, Karvembu R, Oh TH. Platinum group metal (PGM) complexes having acylthiourea ligand system as catalysts or anticancer agents. Coord. Chem. Rev. 2024;503:215620.
22. Al-Salim YM, Al-Asadi RH. Synthesis, Anti-breast Cancer Activity, and Molecular Docking Studies of Thiourea Benzamide Derivatives and Their Complexes with Copper Ion. Trop. J. Nat. Prod. Res. 2023;7(6) 510–518.
23. Van Meerloo J, Kaspers GJL, Cloos J. Cell sensitivity assays: the MTT assay. Cancer cell culture. Meth. Protoc. 2011;237–245.
24. Nawar F, Al-Asadi R, Abid D. Synthesis, antibacterial activity and DFT calculations of some Thiazolidine-4-Carboxylic acid derivatives and their complexes with Cu (II), Fe (II) and VO (II). Egypt. J. Chem. 2020;63(1):349-362.
25. El-ghamry MA, Nassir KM, Elzawawi FM, Aziz AAA, Abu-El-Wafa SM. Novel nanoparticle-size metal complexes derived from acyclovir. Spectroscopic characterization, thermal analysis, antitumour screening, and DNA cleavage, as well as 3D modeling, docking, and electrical conductivity studies. J. Mol. Struct. 2021;1235:130235.
26. Lo SMF, Chui SSY, Shek LY, et al. Solvothermal synthesis of a stable coordination polymer with copper-i copper-ii dimer units:[Cu4 {1, 4-C6H4 (COO) 2} 3 (4, 4 ‘-bipy) 2] n. J. Am. Chem. Soc. 2000;122(26):6293-6294.
27. El-Saied FA, El-Bahnasawy RM, Azzem MA, El-Sawaf AK. Synthesis, characterization and electrochemical properties of β-diketone complexes of ruthenium (III). Polyhedron. 1994;13(11):1781-1786.
28. Al-Daffay RKH, Al-Hamdani AAS. Synthesis and characterization of some metals complexes with new Acidicazo ligand 4-[(2-amino-4-phenylazo)-methyl]-cyclohexane carboxylic acid. Iraqi J. Sci. 2022:3264-3275.
29. Pokhrel N, Agioutanti E, Keles C, Afrouz S, Sarver E. Comparison of respirable coal mine dust constituents estimated using FTIR, TGA, and SEM-EDX. Mining. Metall. Explor. 2022;39(2):291-300.
30. Refat MS, El-Deen IM, Ibrahim HK, El-Ghool S. Synthesis and spectroscopic studies of some transition metal complexes of a novel Schiff base ligands derived from 5-phenylazo-salicyladehyde and o-amino benzoic acid. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2006;65(5):1208-1220.
31. Din, S. U., Iqbal, H., Haq, S., Ahmad, P., Khandaker, M. U., Elansary, H. O., Al-Harbi, F. F., Abdelmohsen, S. A. M., and El-Abedin, T. K. Z. Investigation of the biological applications of biosynthesized nickel oxide nanoparticles mediated by Buxus wallichiana extract. Crystals. 2022;12(2):146.
32. El-Shwiniy WH, Ibrahim AG, Sadeek SA, Zordok WA. Synthesis, structural elucidation, molecular modeling and antimicrobial studies of 6-(2-hydroxyphenylimine)-2-thioxotetrahydropyrimidin-4 (1H)-one (L) Schiff base metal complexes. Appl. Organomet. Chem. 2021;35(5):e6174.
33. Deswal, Y., Asija, S., Tufail, A., Dubey, A., Deswal, L., Kumar, N., Saroya, S., Kirar, J. S., and Gupta, N. M.. Instigating the in vitro antidiabetic activity of new tridentate Schiff base ligand appended M (II) complexes: From synthesis, structural characterization, quantum computational calculations to molecular docking, and molecular dynamics simulation studies. Appl. Organomet. Chem. 2023;37(4):e7050.
34. Abd El-Lateef HM, Ali AM, Khalaf MM, Abdou A. New iron (III), cobalt (II), nickel (II), copper (II), zinc (II) mixed-ligand complexes: Synthesis, structural, DFT, molecular docking and antimicrobial analysis. Bull. Chem. Soc. Ethiop.2024;38(1):147-166.
35. Rawat, V., Gulati, K., Kaur, U., Seth, J. K., Solanki, V., Venkatesh, A. N., Singh, D. P., Singh, N., Loganathan, M., and others,. A Supervised Learning Identification System for Prognosis of Breast Cancer. Math. Probl. Eng. 2022.1 (2022): 7459455
36. Ji, P., Wang, P., Chen, H., Xu, Y., Ge, J., Tian, Z., and Yan, Z. Potential of copper and copper compounds for anticancer applications. Pharmaceuticals. 2023;16(2):234.
37. Zahid, H., ul Ghazali, Z., Shehzad, R. A., Iqbal, J., Al-Buriahi, M. S., Alfryyan, N., Mahmoud, Z. M. M., and Alrowaili, Z. A.. Designing phenyl-di-p-tolyl-amine-based asymmetric small molecular donor materials with favorable photovoltaic parameters. Optik. 2022;256:168739.
38. Naseem, Z., Shehzad, R. A., Jabeen, S., Tahir, S., Mushtaq, F., Zahid, M., and Iqbal, J.. Quantum chemical investigation of choline chloride-based deep eutectic solvents. Chem. Phys. 2023;571:111936.
39. Barroso J, Pan S, Merino G. Structural transformations in boron clusters induced by metal doping. Chem. Soc. Rev. 2022;51(3):1098-1123.
40. Alharis R, Al-Asadi RH, Hassan DA. New Mercurated and Tellurated Sulpha Compounds: Synthesis, Invitro Anticancer Study and DFT Calculation. Egypt. J. Chem. 2021;64(10):5755-5764.
41. Kaya, S., Kaya, C., Guo, L., Kandemirli, F., Tüzün, B., U.ugurlu,.Ilkay, Madkour, L. H., and Saraço.uglu, M. Quantum chemical and molecular dynamics simulation studies on inhibition performances of some thiazole and thiadiazole derivatives against corrosion of iron. J. Mol. Liq.
2016;219:497-504.
42. Tolmachev, D., Lukasheva, N., Ramazanov, R., Nazarychev, V., Borzdun, N., Volgin, I., Andreeva, M., Glova, A., Melnikova, S., Dobrovskiy, A., and others. Computer simulations of deep eutectic solvents: Challenges, solutions, and perspectives. Int. J. Mol. Sci. 2022;23(2):645.
43. Chakraborty D, Chattaraj PK. Conceptual density functional theory based electronic structure principles. Chem. Sci. 2021;12(18):6264-6279.
44. Arshad, N., Rafiq, M., Ujan, R., Saeed, A., Farooqi, S. I., Perveen, F., Channar, P. A., Ashraf, S., Abbas, Q., Ahmed, A., and others,. Synthesis, X-ray crystal structure elucidation and Hirshfeld surface analysis of N-((4-(1 H-benzo [d] imidazole-2-yl) phenyl) carbamothioyl) benzamide: Investigations for elastase inhibition, antioxidant and DNA binding potentials for biological applicati. RSC. Adv. 2020;10(35):20837-20851.
45. Yan, Y., Lin, J., Xu, T., Liu, B., Huang, K., Qiao, L., Liu, S., Cao, J., Jun, S. C., Yamauchi, Y., and others,. Atomic-level platinum filling into Ni-vacancies of dual-deficient NiO for boosting electrocatalytic hydrogen evolution. Adv. Energy Mater. 2022;12(24):2200434.
46. Rahman H, Bintang MI, Asnawi A, Febrina E. Exploring the Molecular Interactions between Volatile Compounds in Coconut Shell Liquid Smoke and Human Bitter Taste TAS2R46 Based on the Molecular Docking and Molecular Dynamics. Trop. J. Nat. Prod. Res. 2023;7(12): 5587.
47. Karima R, Elya B, Sauriasari R. Mechanism of Action of Glucomannan as a Potential Therapeutic Agent for Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking Simulation. Trop. J. Nat. Prod. Res. 2023;7(12): 5460.