LC-MS Analysis and Biological Potential of the Peel Extracts of Citrus aurantium Grown in Jordan
Main Article Content
Abstract
Citrus species are well-known for their applications in medicine and cosmetics. Citrus aurantium is a promising natural source of biologically active constituents such as phenolics and flavonoids. Water, ethanol, and ethyl acetate extracts, prepared from the fruit peels of C. aurantium, were phytochemically and biologically evaluated. Total phenol content (TPC) was determined by the Folin-Ciocalteu method and total flavonoid content (TFC) by the aluminum chloride (AlCl3) colorimetric method. The micro-titer plate dilution method was applied to determine the minimal inhibitory concentration (MIC) and cell viability was assessed utilizing MTT. Ethyl acetate extract exerted the highest TPC and TFC (110.8 mg and 52.1 mg, respectively). Tested cancer cell lines and microorganisms showed high sensitivity to the ethyl acetate extract. Liquid Chromatography-Mass Spectrometry (LC-MS) of this extract revealed the presence of naringin, eriodictyol-7-neohesperidoside and hesperidin as the major constituents. Ethanol and ethyl acetate extracts showed also potent antioxidant capacity against DPPH radicals with respective IC50 values of 102.21 µg/mL and 110.89 µg/mL. The findings demonstrated that ethyl acetate extract of the peels of C. aurantium, grown in Jordan, possesses substantial antioxidant, anticancer and antimicrobial activities
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Khan N, Afaq F, Mukhtar H. Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid Redox Signal. 2008; 10: 475-510.
WHO Report on Cancer. [Online] Setting Priorities, Investing Wisely and Providing Care for All. 2020. [cited 2023 Oct 15]. Available from: https://www.who.int/publications-detail/who-report-on-cancer-setting-priorities-investing-wisely-and-providing-care-for-all.
Kang SR, Park KI, Park HS, Lee DH, Kim JA, Nagappan A, Kim EH, Lee WS, Shin SC, Park MK, Han DY, Kim GS. Anti-inflammatory effect of flavonoids isolated from Korea Citrus aurantium L. on lipopolysaccharide-induced mouse macrophage RAW 264.7 cells by blocking of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathways. Food Chem. 2011;129: 1721-1728.
Maksoud S, Abdel-Massih RM, Rajha HN, Louka N, Chemat F, Barba FJ, Debs E. Citrus aurantium L. active constituents, biological effects and extraction methods. An updated review. Molecules 2021; 26(19): 5832.
Khan IA, Abourashed EA. Leung’s Encyclopedia of Common Natural Ingredients: Used in Food, Drugs and Cosmetics. (3rd ed.) New York: John Wiley & Sons; 2009. 477 p.
Suntar I, Khan H, Patel S, Celano R, Rastrelli L. An overview on Citrus aurantium L.: Its functions as food ingredient and therapeutic agent. Oxid Med Cell Longev. 2018; 7864269.
Jiang Z, Li Z, Wang F, Zhou Z. The protective effects of sour orange (Citrus aurantium L.) polymethoxyflavones on mice irradiation-induced intestinal injury. Molecules 2022; 27(6): 1934.
Kang P, Ryu KH, Lee JM, Kim HK, Seol GH. Endothelium-and smooth muscle-dependent vasodilator effects of Citrus aurantium L. var. amara: Focus on Ca2+ modulation. Biomed Pharmacother. 2016; 82: 467-471.
Mejri H, Wannes WA, Mahjoub FH, Hammami M, Dussault C, Legault J, Saidani-Tounsi M. Potential bio-functional properties of Citrus aurantium L. leaf: Chemical composition, antiviral activity on Herpes simplex virus type-1, antiproliferative effects on human lung and colon cancer cells and oxidative protection. Int J Environ Health Res. 2023; 8:1-11.
Oulebsir C, Mefti-Korteby H, Djazouli ZE, Zebib B, Merah O. Essential oil of Citrus aurantium L. leaves: Composition, antioxidant activity, elastase and collagenase inhibition. Agronomy 2022; 27(6): 1934.
Fugh-Berman A, Myers A. Citrus aurantium, an ingredient of dietary supplements marketed for weight loss: Current status of clinical and basic research. Exp Biol Med. 2004; 229: 698-704.
De Moraes Pultrini A, Galindo LA, Costa M. Effects of the essential oil from Citrus aurantium L. in experimental anxiety models in mice. Life Sci. 2006; 78: 1720-1725.
Mannucci C, Calapai F, Cardia L, Inferrera G, D’Arena G, Di Pietro M, Navarra M, Gangemi S, Spagnolo EV, Calapai G. Clinical pharmacology of Citrus aurantium and Citrus sinensis for the treatment of anxiety. Evidence-based Complement Altern Med. 2018: 3624094.
Moraes TM, Kushima H, Moleiro FC, Santos RC, Rocha LRM, Marques MO, Vilegas W, Hiruma-Lima CA. Effects of limonene and essential oil from Citrus aurantium on gastric mucosa: Role of prostaglandins and gastric mucus secretion. Chem Biol Interact. 2009; 180: 499-505.
Suryawanshi JAS. An overview of Citrus aurantium used in treatment of various diseases. African J Plant Sci. 2011; 5: 390-395.
Park KI, Park HS, Kim MK, Hong GE, Nagappan A, Lee HJ, Yumnam S, Lee WS, Won CK, Shin SC. Flavonoids identified from Korean Citrus aurantium L. inhibit non-small cell lung cancer growth in vivo and in vitro. J Funct Foods. 2014; 7: 287-297.
Yao L, Zhang X, Huang C, Cai Y, Wan CC. The effect of Citrus aurantium on non-small-cell lung cancer: A research based on network and xperimental pharmacology. Biomed Res Int. 2023: 6407588.
Choi B, Kim T, Lee D, Jung W, Lim J, Jung J, Yang SH, Suh J. A polymethoxy flavonoids‐rich Citrus aurantium extract ameliorates ethanol‐induced liver injury through modulation of AMPK and Nrf2‐related signals in a binge drinking mouse model. Phytother Res. 2015; 29:1577-1584.
Healthcare T. PDR for Herbal Medicines. (4th ed.). Toronto: Thomson Reuters; 2004. 86 p.
El Sayed AM, Basam SM, El-Naggar EBA, Marzouk HS, El-Hawary S. LC-MS/MS and GC-MS profiling as well as the antimicrobial effect of leaves of selected Yucca species introduced to Egypt. Sci Rep. 2024; 10:17778.
Bouhalla AM. Benabdelmoumene D, Dahmouni S, Bengharbi Z, Hellal K, Qadi WSM, Al-Olayan E, Moreno A, Bekada A, Buzgaia N, Aziz H, Mediani A. Comparative LC-MS-based metabolite profiling, antioxidant, and antibacterial properties of Bunium bulbocastanum tubers from two regions in Algeria. Sci Rep. 2024; 14:21719.
Vandebroek I, Picking D. Popular Medicinal Plants in Portland and Kingston, Jamaica. (1st ed.), Berlin: Springer; 2020. 79 p.
Mahmod AI, Oqal M, Khalid AM, Afifi FU, Talib WH. Phytochemical analysis, antioxidant, and antitumor activity of Ligustrum ovalifolium leaves grown in Jordan: an in vitro and in vivo study. Pharmacia 2024; 71: 1-10.
Khalid AM, Mahmod AI, Talib WH, Afifi FU. LC-MS analysis and antioxidant, antimicrobial and antiproliferative investigations of Leucaena leucocephala flowers growing in Jordan. Farmacia 2024; 72(2): 337-345
Okafor CE, Ijoma IK, Igboamalu CA, Ezebalu CE, Eze CF, Osita-Chikeze JC, Uzor CE, Ekwuekwe AL.. Secondary metabolites, spectra characterization, and antioxidant correlation analysis of the polar and nonpolar extracts of Bryophyllum pinnatum (Lam) Oken. BioTechnologia, 2024; 105(2):121-136.
Alobaedi OH, Talib WH, Basheti IA. Antitumor effect of thymoquinone combined with resveratrol on mice transplanted with breast cancer. Asian Pac J Trop Med. 2017; 10: 400-408.
Rashid HM, Mahmod AI, Afifi FU, Talib WH. Antioxidant and antiproliferation activities of lemon verbena (Aloysia citrodora): An in vitro and in vivo study. Plants 2022; 11: 785.
Al Safi, MA, Rashid HM, Afifi FU, Talib WH. Gaz Alafi: A traditional dessert in the Middle East with anticancer, immunomodulatory, and antimicrobial activities. Front Nutr. 2022; 9: 900506.
Al-Mterin MA, Aboalhaija NH, Abaza IF, Kailani MH, Zihlif MA, Afifi FU. Chromatographic analysis (LC-MS and GC-MS), antioxidant activity, total phenol and total flavonoid determination of Ononis natrix L. grown in Jordan. Jordan J Chem. 2021; 16:31-39.
Bocco A, Cuvelier ME, Richard H, Berset C. Antioxidant activity and phenolic composition of citrus peel and seed extracts. J Agric Food Chem. 1998; 46: 2123-2129.
Abeysinghe DC, Li X, Sun C, Zhang W, Zhou C, Chen K. Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem. 2007; 104:1338-1344.
Gorinstein S, Martı́n-Belloso O, Park YS, Haruenkit R, Loje A, Ĉı́ž M, Caspi A. Comparison of some biochemical characteristics of different citrus fruits. Food Chem. 2002; 74: 309-315.
Rekha C, Poornima G, Manasa M, Abhipsa V, Devi JP, Kumar HTV, Kekuda TRP. Ascorbic acid, total phenol content and antioxidant activity of fresh juices of four ripe and unripe citrus fruits. Chem Sci Trans. 2012; 1: 303-310.
Ghasemi K, Ghasemi Y, Ebrahimzadeh MA. Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak J Pharm Sci. 2009; 22: 277-281.
Lagha-Benamrouche S, Madani K. Phenolic contents and antioxidant activity of orange varieties (Citrus sinensis L. and Citrus aurantium L.) cultivated in Algeria: Peels and leaves. Ind Crops Prod. 2013; 50: 723-730.
Zhao ZH, Ma XL, Zhao B, Tian P, Ma JX, Kang JY, Zhang Y, Guo Y, Sun L. Naringin‐inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord‐derived mesenchymal stem cell‐based bone regeneration. Cell Prolif. 2021; 54(7):e13043.
Chen R, Qi QL, Wang MT, Li QY. Therapeutic potential of naringin: an overview. Pharm Biol. 2016; 54: 3203-3210.
Hassan RA, Hozayen WG, Abo Sree HT, Al-Muzafar HM, Amin KA, Ahmed OM. Naringin and hesperidin counteract Diclofenac‐induced hepatotoxicity in male Wistar rats via their antioxidant, anti‐Inflammatory, and antiapoptotic activities. Oxid Med Cell Longev. 2021; 2021:9990091.
Chen R, Gao S, Guan H, Zhang X, Gao Y, Su Y, Song Y, Jiang Y, Li N. Naringin protects human nucleus pulposus cells against TNF‐α‐induced inflammation, oxidative stress, and loss of cellular homeostasis by enhancing autophagic flux via AMPK/SIRT1 activation. Oxid Med Cell Longev. 2021; 2021:7655142.
Bin-Emran T, Islam F, Nath N, Sutradhar H, Das R, Mitra S, Alshahrani MM, Alhasaniah AH, Sharma, R. Naringin and naringenin polyphenols in neurological diseases: understandings from a therapeutic viewpoint. Life 2023; 13(1): 99.
Stabrauskiene J, Kopustinskiene DM, Lazauskas R, Bernatoniene J. Naringin and naringenin: Their mechanisms of action and the potential anticancer activities. Biomed. 2022; 10(7):1686.
Chen J, Qin X, Chen M, Chen T, Chen Z, He B. Biological activities, molecular mechanisms, and clinical application of naringin in metabolic syndrome. Pharmacol Res. 2024; 202:107124.
Bucolo C, Leggio GM, Drago F, Salomone S. Eriodictyol prevents early retinal and plasma abnormalities in streptozotocin-induced diabetic rats. Biochem Pharmacol. 2012; 84: 88-92.
Johnson J, Maher P, Hanneken A. The flavonoid, eriodictyol, induces long-term protection in ARPE-19 cells through its effects on Nrf2 activation and phase 2 gene expression. Invest. Ophthalmol Vis Sci. 2009; 50: 2398-2406.
Narváez-Mastache JM, Novillo F, Delgado G. Antioxidant aryl-prenylcoumarin, flavan-3- ols and flavonoids from Eysenhardtia subcoriacea. Phytochemistry 2008; 69: 451-456.
Zhang X, Hung TM, Phuong PT, Ngoc TM, Min BS, Song KS, Seong YH, Bae KH. Anti-inflammatory activity of flavonoids from Populus davidiana. Arch Pharm Res 2006; 29: 1102-1108.
Zhan WY, Lee JJ, Kim Y, Kim IS, Han JH, Lee SG, Ahn MJ, Jung SH, Myung CS. Effect of eriodictyol on glucose uptake and insulin resistance in vitro. J Agric Food Chem. 2012; 60:7652-7658.
He J, Fu H, Li C, Deng Z, Chang H. Eriodictyol inhibits breast carcinogenesis by targeting circ_0007503 and repressing PI3K/Akt pathway. Phytomed. 2022; 102:154159.
Lee SE, Yang H, Son GW, Park HR, Park CS, Jin YH, Park YS. Eriodictyol protects endothelial cells against oxidative stress-induced cell death through modulating ERK/Nrf2/ARE-dependent heme oxygenase-1 expression. Int J Mol Sci.2015; 16: 14526-14539.
Aggarwal V, Tuli HS, Thakral F, Singhal P, Aggarwal D, Srivastava S, Pandey A, Sak K, Varol M, Khan M.A. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Exp Biol Med 2020; 245: 486-497.
Ahmadi A, Shadboorestan A. Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr Cancer 2016; 68: 29–39.
Alshatwi AA, Ramesh E, Periasamy VS, Subash‐Babu P. The apoptotic effect of hesperetin on human cervical cancer cells is mediated through cell cycle arrest, death receptor, and mitochondrial pathways. Fundam Clin Pharmacol. 2013; 27: 581-592.
Al-Ataby IA, Talib WH. Daily consumption of elmon and gingerherbal infusion caused tumor regression and activation of the immune system in a mouse model of breast cancer. Front Nutr. 2022; 13(9): 829101.
Han MH, Lee WS, Lu JN, Kim G, Jung, JM, Ryu CH, Kim GY, Hwang HJ, Kwon TK, Choi YH. Citrus aurantium L. exhibits apoptotic effects on U937 human leukemia cells partly through inhibition of Akt. Int J Oncol. 2012; 40: 2090-2096.
Shen CY, Yang L, Jiang JG, Zheng CY, Zh W. Immune enhancement effects and extraction optimization of polysaccharides from Citrus aurantium L. var. amara. Engl Food Funct. 2017; 8: 796-807.
Lim SW, Lee DR, Choi BK, Kim HS, Yang SH, Suh JW, Kim KS. Protective effects of a polymethoxy flavonoids-rich Citrus aurantium peel extract on liver fibrosis induced by bile duct ligation in mice. Asian Pac J Trop Med. 2016; 9: 1158-1164.
Li H, Yang B, Huang J, Xiang T, Yin X, Wan J, Luo F, Zhang L, Li H, Ren G. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway. Toxicol Lett. 2013; 220: 219-228.
Ramesh E, Alshatwi AA. Naringin induces death receptor and mitochondria-mediated apoptosis in human cervical cancer (SiHa) cells. Food Chem Toxicol. 2013; 51: 97-105.
Kim DI, Lee SJ, Lee SB, Park K, Kim WJ, Moon SK. Requirement for Ras/Raf/ERK pathway in naringin-induced G 1-cell-cycle arrest via p21WAF1 expression. Carcinog. 2008; 29:1701-1709.
Lewinska A, Siwak J, Rzeszutek I, Wnuk M. Diosmin induces genotoxicity and apoptosis in DU145 prostate cancer cell line. Toxicol Vitr. 2015; 29: 417-425.
Zhang Y, Zhang R, Ni H. Eriodictyol exerts potent anticancer activity against A549 human lung cancer cell line by inducing mitochondrial mediated apoptosis, G2/M cell cycle arrest and inhibition of m-TOR/PI3K/Akt signaling pathway. Arch Med Sci. 2020; 16(2): 446-452.
Li W, Du Q, Li X, Zheng X, Lv F, Xi X, Huang G, Yang J, Liu S. Eriodictyol inhibits proliferation, metastasis and induces apoptosis of Glioma cells via PI3K/Akt/NF-ĸB signaling pathway. Front Pharmacol. 2020;11: 114.
Luo X, HeJ, Bao Y, Wang S, Li T, Leng J, Meng X, Zhang YA. Preliminary study on Fructus aurantii extract against hepatocarcinoma via glycolysis and PD-1/PD-L1 pathway. Pharmacol Res-Mod Chin Med. 2020; 2: 10005.
Madureira MB, Concato VM, Cruz EMS, de Morais JMB, Inoue FSR, Santos NC, Gonçalves MD, de Souza MC, Scandolara TB, Mezoni MF, Galvani M, Seiva FRF, Panis C, Miranda-Sapla MM, Pavanelli WR. Naringenin and hesperidin as promising alternatives for prevention and co-djuvant therapy for breast cancer. Antioxidants 2023; 12: 586.
Li C, Schluesener H. Health-promoting effects of the citrus flavanone hesperidin, Crit Rev Food Sci Nutr. 2017; 57: 613-631.
Al-Rikabi R, Al-Shmgani H, Dewir YH, El-Hendawy S. In vivo and in vitro evaluation of the protective effects of hesperidin in lipopolysaccharide-induced inflammation and cytotoxicity of cell. Molecules 2020; 25(3): 478.
Ahmadi A, Shadboorestan A, Nabavi SF, Setzer WN, Nabavi SM. The role of hesperidin in cell signal transduction pathway for the prevention or treatment of cancer, Cur Med Chem. 2015; 22: 3462-3471.
Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci. 2015; 124: 64-74.
Meléndez PA, Capriles VA. Antibacterial properties of tropical plants from Puerto Rico. Phytomedicine 2006; 13: 272-276.
Oliveira SAC, Zambrana JRM, di Iorio FBR, Pereira CA, Jorge AOC. The antimicrobial effects of Citrus limonum and Citrus aurantium essential oils on multi-species biofilms. Braz Oral Res. 2014; 28: 22-27.
Yu M, You D, Zhuang J, Lin S, Dong L, Weng S, Zhang B, Cheng K, Weng W, Wang H. Controlled release of naringin in metal-organic framework-loaded mineralized collagen coating to simultaneously enhance osseointegration and antibacterial activity. ACS Appl Mater Interfaces. 2017; 9: 19698-19705.
Rao K, Imran M, Tabri T, Ali I, Perveen S, Ahmed S, Shah MR. Gum tragacanth stabilized green gold nanoparticles as cargos for naringin loading: A morphological investigation through AFM. Carbohydr Poly. 2017; 174: 243-252.
Adamczak A, Ożarowski M, Karpiński TM. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J Clin Med. 2019; 9: 109.
Pereira RMS, Andrades NED, Paulino N, Sawaya ACHF, Eberlin MN, Marcucci MC, Favero GM, Novak EM, Bydlowski SP. Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity. Molecules. 2007; 12: 1352-1366.
Duda-Madej A, Stecko J, Sobieraj J, Szymańska N, Kozłowska J. Naringenin and its derivatives health-promoting phytobiotic against resistant bacteria and fungi in humans. Antibiotics. 2022; 11: 1628.
De Gregorio AC, Garcıa-Domenech R, Gálvez J, Ros MJ, Wolski S, Garcıa MD. Molecular topology: a useful tool for the search of new antibacterials. Bioorg Med Chem Lett. 2000; 10 :2033-2036.
Iranshahi M, Rezaee R, Parhiz H, Roohbakhsh A, Soltani F. Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin. Life Sci. 2015; 137: 125-132.
Cvetnic Z, Vladimir-Knezevic S. Antimicrobial activity of grapefruit seed and pulp ethanolic extract. Acta Pharm. 2004; 54: 243-250.
Kim H, Lee DG. Naringin‐generated ROS promotes mitochondria‐mediated apoptosis in Candida albicans. IUBMB Life 2021; 73: 953-967.
Salas MP, Céliz G, Geronazzo H, Daz M, Resnik SL. Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species, Food Chem. 2011; 124: 1411-1415.
Corciova A, Ciobanu C, Poiata A, Mircea C, Nicolescu A, Drobota M, Varganici CD, Pinteala T, Marangocim N. Antibacterial and antioxidant properties of hesperidin: β-cyclodextrin complexes obtained by different techniques. J Incl Phenom Macrocycl Chem. 2015; 81:71-84.
Daoud S, Afifi FU, Al-Bakri AG, Kasabri V, Hamdan II. Preparation, physicochemical characterization and biological evaluation of some hesperidin metal complexes. Iran J Pharm Res. 2014;13: 909.
Hao Y, Wei Z, Wang Z, Li G, Yao Y, Dun B. Biotransformation of flavonoids improves antimicrobial and anti-breast cancer activities in vitro. Foods. 2021;10: 2367.