Polysaccharides from the Fruits of Balanites aegyptiaca Del.: Preliminary Characterization, Antioxidant, Hypoglycaemic, and Anti-inflammatory Activities
Main Article Content
Abstract
Polysaccharides are major cellular macromolecules. They have different pharmaceutical, nutritional, and biological applications depending on their structure, and composition. The current study aim to evaluate the antioxidant, hypoglycaemic and anti-inflammatory activities of polysaccharides from the fruits of Balanites aegyptiaca Del. (BA) harvested from the Algerian Sahara. Polysaccharides from BA were extracted by the hot water method. The preliminary characterization of the crude polysaccharides was done by Ultra violet-Visible (UV-Vis) spectrophotometry, Fourier Transform Infrared (FT-IR) spectrophotometry, and Gas Chromatography/Mass Spectrometry-Electron Ionization (GC/MS-EI). The antioxidant activity was determined by the 1,1-Diphenyl-2-picryl hydrazyl (DPPH), 2,2’-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and Hydroxyl (OH) radical scavenging, ferric reducing power, and total antioxidant capacity assays. Hypoglycaemic activity was evaluated using the α-amylase, and α-glucosidase inhibitory assays. The anti-inflammatory activity was assessed by the protein denaturation inhibitory assay. The results showed that BA polysaccharides consisted of 34.06% galacturonic acid, 27.82% arabinose, 15.63% galactose, 9.71% glucose, 7.04% xylose, and 5.74% rhamnose. In the antioxidant assays, BA polysaccharides exhibited a significant antiradical activity against DPPH• (IC50 = 0.745±0.003 mg/mL), ABTS• (IC50 = 1.390±0.018 mg/mL), OH• (IC50 = 2.77±0.048 mg/mL), and a strong ferric reducing power and total antioxidant capacity. BA polysaccharides showed moderate hypoglycaemic effect with IC50 values of 44.132±0.926 and 27.117±0.737 mg/mL for α-amylase and α-glucosidase inhibitory activity, respectively. Furthermore, BA polysaccharides displayed a strong anti-inflammatory activity as measured by its inhibition of protein denaturation (67.94% inhibition at 0.5 mg/mL). Therefore, BA polysaccharides could serve as a natural source of antioxidant, hypoglycaemic, and anti-inflammatory agents.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Mohammed ASA, Naveed M, Jost N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities). J Polym Environ. 2021; 29(8): 2359-2371. https://doi.org/10.1007/s10924-021-02052-2
Kabir SF, Rahman A, Yeasmin F, Sultana S, Masud RA, Kanak NA, Haque P. Occurrence, distribution, and structure of natural polysaccharides. In: Naeem M, Aftab T, Khan MMA. (Eds.). Radiation-processed polysaccharides. Academic Press. 2022; 1-27. https://doi.org/10.1016/B978-0-323-85672-0.00005-2
Wang J, Hu S, Nie S, Yu Q, Xie M. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid Med Cell Longev. 2016; 2016: 5692852. https://doi.org/10.1155/2016/5692852
Singh D, Rajput A, Bhatia A, Kumar A, Kaur H, Sharma P, Kaur P, Singh S, Attri S, Singh Buttar H, Singh B, Arora S. Plant-based polysaccharides and their health functions. FFHD. 2021; 11(4): 179-200. https://www.doi.org/10.31989/ffhd.v11i5.773
Benalaya I, Alves G, Lopes J, Silva LR. A Review of natural polysaccharides: sources, characteristics, properties, food, and pharmaceutical applications. Int J Mol Sci. 2024; 25(2): 1322. https://doi.org/10.3390/ijms25021322
Angone S, Nguema-Ona E, Boudjeko T, Driouich A. Plant Cell wall polysaccharides: immunomodulators of the immune system and source of natural fibers. Curr. Top. Phytochem. 2011; 20: 1-16. https://normandie-univ.hal.science/hal-01848257
Al-Thobaiti SA, Abu Zeid IM. Medicinal properties of desert date plants (Balanites aegyptiaca)-an overview. Global Jour Pharm. 2018; 12(1): 01-12. https://api.semanticscholar.org/CorpusID:251619936
Dey H, Shaili S. Exploring the phytochemical diversity and pharmacological potentials of Balanites aegyptiaca: A Review. Ijnrph. 2023; 1(2): 53-63. https://doi.org/10.61554/ijnrph.v1i2.2023.34.
Murthy HN, Yadav GG, Dewir YH, Ibrahim A. Phytochemicals and biological activity of desert date (Balanites aegyptiaca (L.) Delile). Plants (Basel). 2020; 10(1): 32. https://doi.org/10.3390/plants10010032
Dubois M, Gilles KA, Hamilton JK, Pebers PA, Smith F. Colorimetric method for determination of sugar and relayed substances. Anal. Chem. 1956; 28: 350-356. http://dx.doi.org/10.1021/ac60111a017
Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973; 54: 484-489. https://doi.org/10.1016/0003-2697(73)90377-1
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999; 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
Pierre G, Graber M, Rafiliposon BA, Dupuy C, Orvain F, De Crignis M, Maugard T. Biochemical composition and changes of extracellular polysaccharides (ECPS) produced during microphytobenthic biofilm development (Marennes-Oléron, France). Microb Ecol. 2012; 63(1): 157-169. https://doi.org/10.1007/s00248-011-9959-8.
Ji X, Hou C, Yan Y, Shi M, Liu Y. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit. Int J Biol Macromol. 2020; 149: 1008-1018. https://doi.org/10.1016/j.ijbiomac.2020.02.018
Li YJ, Lin DD, Jiao B, Xu CT, Qin JK, Ye GJ, Su GF. Purification, antioxidant and hepatoprotective activities of polysaccharide from Cissus pteroclada Hayata. Int J Biol Macromol. 2015; 77: 307-313. https://doi.org/10.1016/j.ijbiomac.2015.03.039.
Chen S, Huang H, Huang G. Extraction, derivatization and antioxidant activity of cucumber polysaccharide. Int J Biol Macromol. 2019; 140: 1047-1053. https://doi.org/10.1016/j.ijbiomac.2019.08.203
Zhu Y, Yu X, Ge Q, Li J, Wang D, Wei Y, Ouyang Z. Antioxidant and anti-aging activities of polysaccharides from Cordyceps cicadae. Int J Biol Macromol. 2020; 157: 394-400. https://doi.org/10.1016/j.ijbiomac.2020.04.163
Ijoma KI, Ajiwe VIE, Odinma SC. The organic extracts from the leaves of Ficus thonningii Blume, Jatropha tanjorensis JL Ellis and Saroja and Justicia carnea Lindley as potential nutraceutical antioxidants and functional foods. Trends Phytochem. Res. 2023; 7(1): 76-85. Doi: 10.30495/tpr.2023.1977670.1318
Apostolidis E, Kwon YI, Shetty K. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. IFSET. 2007; 8: 46-54. http://dx.doi.org/10.1016/j.ifset.2006.06.001
Deng Y, Huang L, Zhang C, Xie P, Cheng J, Wang X, Liu L. Novel polysaccharide from Chaenomeles speciosa seeds: Structural characterization, α-amylase and α-glucosidase inhibitory activity evaluation. Int J Biol Macromol. 2020; 153: 755-766. https://doi.org/10.1016/j.ijbiomac.2020.03.057
Drăgan M, Stan CD, Iacob A, Profire L. Assessment of in vitro antioxidant and anti-inflammatory activities of new azetidin-2-one derivatives of ferulic acid. Farmacia. 2016; 64 (5): 717-721.
Liu J, Willfo S, Xun C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioact. Carbohydr. Diet. Fibre. 2015; 5(1): 31-61. https://doi.org/10.1016/j.bcdf.2014.12.001
Mkadmini Hammi K, Hammami M, Rihouey C, Le Cerf D, Ksouri R, Majdoub H. Optimization extraction of polysaccharide from Tunisian Zizyphus lotus fruit by response surface methodology: Composition and antioxidant activity. Food Chem. 2016; 212: 476-484. https://doi.org/10.1016/j.foodchem.2016.06.004.
Huang F, Zhang R, Yi Y, Tang X, Zhang M, Su D, Deng Y, Wei Z. Comparison of physicochemical properties and immunomodulatory activity of polysaccharides from fresh and dried litchi pulp. Molecules. 2014; 19(4): 3909-3925. https://doi.org/10.3390/molecules19043909
Chen X, Zhang H, Du W, Qian L, Xu Y, Huang Y, Xiong Q, Li H, Yuan J. Comparison of different extraction methods for polysaccharides from Crataegus pinnatifida Bunge. Int J Biol Macromol. 2020; 150: 1011-1019. https://doi.org/10.1016/j.ijbiomac.2019.11.056
Tian X, Liang T, Liu Y, Ding G, Zhang F, Ma Z. Extraction, structural characterization, and biological functions of Lycium Barbarum polysaccharides: A Review. Biomolecules. 2019; 9(9): 389. https://doi.org/10.3390/biom9090389
Huang Y, Xie W, Tang T, Chen H, Zhou X. Structural characteristics, antioxidant and hypoglycemic activities of polysaccharides from Mori Fructus based on different extraction methods. Front. Nutr. 2023; 10: 1125831. https://doi.org/10.3389/fnut.2023.1125831
Xu Y, Niu X, Liu N, Gao Y, Wang L, Xu G, Li X, Yang Y. Characterization, antioxidant and hypoglycemic activities of degraded polysaccharides from blackcurrant (Ribes nigrum L.) fruits. Food Chem. 2018; 243: 26-35. https://doi.org/10.1016/j.foodchem.2017.09.107
Dou Z, Chen C, Fu X. The effect of ultrasound irradiation on the physicochemical properties and α-glucosidase inhibitory effect of blackberry fruit polysaccharide. Food Hydrocolloids. 2019; 96: 568-576. https://doi.org/10.1016/j.foodhyd.2019.06.002
Yang RF, Zhao C, Chen X, Chan SW, Wu JY. Chemical properties and bioactivities of Goji (Lycium barbarum) polysaccharides extracted by different methods. Journal of Functional Foods. 2015; 17: 903-909. https://doi.org/10.1016/j.jff.2015.06.045
Rjeibi I, Zaabi R, Jouida W. Characterization of polysaccharides extracted from pulps and seeds of Crataegus azarolus L. var. aronia: Preliminary structure, antioxidant, antibacterial, α-amylase, and acetylcholinesterase inhibition properties. Oxid Med Cell Longev. 2020; 2020: 1903056. https://doi.org/10.1155/2020/1903056
Hong T, Yin JY, Nie SP, Xie MY. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem X. 2021; 12: 100168. https://doi.org/10.1016/j.fochx.2021.100168
Wang FL, Ji YB, Yang B. Sulfated modification, characterization and monosaccharide composition analysis of Undaria pinnatifida polysaccharides and anti-tumor activity. Experimental and therapeutic medicine. 2020; 20: 630-636. https://doi.org/10.3892/etm.2020.8720
Zhang S, Liu X, Yan L, Zhang Q, Zhu J, Huang N, Wang Z. Chemical compositions and antioxidant activities of polysaccharides from the sporophores and cultured products of Armillaria mellea. Molecules. 2015; 20(4): 5680-5697. https://doi.org/10.3390/molecules20045680
Gnanasambandam R, Proctor AJFC. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food chemistry. 2000; 68(3): 327-332. https://doi.org/10.1016/S0308-8146(99)00191-0
Fan M, Dai D, Huang B. Fourier transform infrared spectroscopy for natural fibres. In: Salih S (Ed.). Fourier transform-materials analysis. London: IntechOpen; 2012. 45-68 p.https://doi.org/10.5772/35482
Zhao M, Kuang F, Zhang Y, Lv G. Effects of hydrolysis condition and detection method on the monosaccharide composition analysis of polysaccharides from natural sources. Separations. 2024; 11(2): 1-17. https://doi.org/10.3390/separations11010002
Feriani A, Tir M, Gómez-Caravaca AM, Contreras MDM, Talhaoui N, Taamalli A, Segura-Carretero A, Ghazouani L, Mufti A, Tlili N, Allagui MS. HPLC-DAD-ESI-QTOF-MS/MS profiling of Zygophyllum album roots extract and assessment of its cardioprotective effect against deltamethrin-induced myocardial injuries in rat, by suppression of oxidative stress-related inflammation and apoptosis via NF-κB signaling pathway. J Ethnopharmacol. 2020; 247: 112266. https://doi.org/10.1016/j.jep.2019.112266
Yang Y, Lei Z, Zhao M, Wu C, Wang L, Xu Y. Microwave-assisted extraction of an acidic polysaccharide from Ribes nigrum L.: Structural characteristics and biological activities. Ind. Crop. Prod. 2020;147: 112249. https://doi.org/10.1016/j.indcrop.2020.112249
Rjeibi I, Feriani A, Hentati F, Hfaiedh N, Michaud P, Pierre G. Structural characterization of water-soluble polysaccharides from Nitraria retusa fruits and their antioxidant and hypolipidemic activities. Int J Biol Macromol. 2019; 129: 422-432. https://doi.org/10.1016/j.ijbiomac.2019.02.049
Zhong Q, Wei B, Wang S, Ke S, Chen J, Zhang H, Wang H. The Antioxidant activity of polysaccharides derived from marine organisms: An Overview. Marine Drugs. 2019; 17(12): 674. https://doi.org/10.3390/md17120674.
Mirzadeh M, Arianejad MR, Khedmat L. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydr Polym. 2020; 229: 115421. https://doi.org/10.1016/j.carbpol.2019.115421
Marc F, Davin A, Deglène-Benbrahim L, Ferrand C, Baccaunaud M, Fritsch P. Studies of several analytical methods for antioxidant potential evaluation in food. Med Sci (Paris). 2004; 20(4): 458-463. https://doi.org/10.1051/medsci/2004204458
Mohammed JK, Mahdi AA, Ahmed MI, Ma M, Wang H. Preparation, deproteinization, characterization, and antioxidant activity of polysaccharide from Medemia argun fruit. Int J Biol Macromol. 2020; 155: 919-926. https://doi.org/10.1016/j.ijbiomac.2019.11.050
Zhao B, Liu J, Chen X, Zhang J, Wang J. Purification, structure and anti-oxidation of polysaccharides from the fruit of Nitraria tangutorum Bobr. RSC Adv. 2018; 8(21): 11731-11743. https://doi.org/10.1039/c8ra01125g
Liu Y, Zhang B, Ibrahim SA, Gao SS, Yang H, Huang W. Purification, characterization and antioxidant activity of polysaccharides from Flammulina velutipes residue. Carbohydr Polym. 2016; 145: 71-77. https://doi.org/10.1016/j.carbpol.2016.03.020
Wu GH, Hu T, Li ZY, Huang ZL, Jiang JG. In vitro antioxidant activities of the polysaccharides from Pleurotus tuber-regium (Fr.) Sing. Food Chem. 2014; 148: 351-356. https://doi.org/10.1016/j.foodchem.2013.10.029
Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013; 21(2): 143-152. https://doi.org/10.1016/j.jsps.2012.05.002
Kim KT, Rioux LE, Turgeon SL. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry. 2014; 98: 27-33. https://doi.org/10.1016/j.phytochem.2013.12.003
Yang Y, Lei Z, Zhao M, Wu C, Wang L, Xu Y. Microwave-assisted extraction of an acidic polysaccharide from Ribes nigrum L.: Structural characteristics and biological activities. Ind Crops Prod. 2020; 147: 112249. https://api.semanticscholar.org/CorpusID:213846282
Gu S, Sun H, Zhang X, Huang F, Pan L, Zhu Z. Structural characterization and inhibitions on α-glucosidase and α-amylase of alkali-extracted water-soluble polysaccharide from Annona squamosa residue. Int J Biol Macromol. 2021; 166: 730-740. https://doi.org/10.1016/j.ijbiomac.2020.10.230
Zhang JQ, Li C, Huang Q, You LJ, Chen C, Fu X, Liu RH. Comparative study on the physicochemical properties and bioactivities of polysaccharide fractions extracted from Fructus Mori at different temperatures. Food Funct. 2019; 10: 410-421. https://doi.org/10.1039/C8FO02190B
Rahman H, Eswaraiah MC, Dutta AM. In-vitroanti-inflammatory and anti-arthritic activity of Oryza sativa Var. Joha rice (an aromatic indigenous rice of Assam). American-Eurasian J. Agric. & Environ. Sci. 2015; 15(1): 115-121. http://www.idosi.org/aejaes/jaes15(1)15/19.pdf
Paul S, Modak D, Chattaraj S, Nandi D, Sarkar A, Roy J, Chaudhuri TK, Bhattacharjee S. Aloe vera gel homogenate shows anti inflammatory activity through lysosomal membrane stabilization and downregulation of TNF-α and Cox-2 gene expressions in inflammatory arthritic animals. FJPS. 2021; 7(12): 1-8. https://doi.org/10.1186/s43094-020-00163-6
Bailey-Shaw YA, Williams LAD, Green CE, Rodney S, Smith AM. In vitro evaluation of the anti-inflammatory potential of selected jamaican plant extracts using the bovine serum albumin protein denaturation assay. Int. J. Pharm. Sci. Rev. Res. 2017; 47(1): 145-153. https://api.semanticscholar.org/CorpusID:201857256
Murad SA, Abd-Elshafy DN, Abou Baker DH, Bahgat MM, Ibrahim EA, Gaafar AA, Salama ZA. Unveiling the anti-alzheimer, antioxidant, anti-inflammatory, antiviral therapeutic functionality of polysaccharides extracted from Opuntia ficus. Egypt. J. Chem. 2023; 66 (5): 237-244. https://doi.org/10.21608/ejchem.2022.148208.6435
Jin MY, Li MY, Huang RM, Wu XY, Sun YM, Xu ZL. Structural features and anti-inflammatory properties of pectic polysaccharides: A review, Trends in Food Science and Technology. 2021; 107: 284-298. https://doi.org/10.1016/j.tifs.2020.10.042