Antimicrobial Effects of Tannic and Gallic Acids: A Study on 3D-Printed Polylactic Acid Surfaces Against P. aeruginosa and S. aureus
Main Article Content
Abstract
des
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Edwardson S, Cairns C. Nosocomial infections in the ICU. J Anesth Analg Crit Care. 2019; 20(1):14–18.
Ma YX, Wang CY, Li YY, Li J, Wan QQ, Chen JH, Tay FR, Niu LN. Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections. Adv Sci. 2020; 7(1):1901872.
Roberto P, Moreno H, Inácio Da Costa-Issa F, Rajca-Ferreira AK, Pereira MAA, Kaneko TM. Native Brazilian Plants Against Nosocomial Infections: A Critical Review on their Potential and the Antimicrobial Methodology. Curr Top Med Chem. 2013; 13(24):3040–3078.
Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018; 81(1):7–11.
Utami DT, Hertiani T, Pratiwi SUT, Haniastuti T, Randy A, Priyanto JA, Prastya ME. Correlation Analyses of the Oral Biofilm Growth Inhibition Towards Hydrophobicity Reduction of Oral Pathogenic Bacteria. Trop J Nat Prod Res. 2023; 7(10):4141–4145.
Zobell CE. The effect of solid surfaces upon bacterial activity. J Bacteriol. 1943; 46(1):39–56.
Hermansson M. The DLVO theory in microbial adhesion. Colloids Surf B Biointerfaces. 1999; 14(1–4):105–119.
Dong G, Liu H, Yu X, Zhang X, Lu H, Zhou T, Cao J. Antimicrobial and anti-biofilm activity of tannic acid against Staphylococcus aureus. Nat Prod Res. 2018; 32(18):2225–2228.
Zarandona I, Puertas AI, Dueñas MT, Guerrero P, de la Caba K. Assessment of active chitosan films incorporated with gallic acid. Food Hydrocoll. 2020; 101:105486.
Kaczmarek B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-A minireview. Materials. 2020; 13(14):3224.
AL Zahrani NA, El-Shishtawy RM, Asiri AM. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur J Med Chem. 2020; 204:112609.
Alibi S, Crespo D, Navas J. Plant-derivatives small molecules with antibacterial activity. Antibiotics. 2021; 10(3):1–19.
Kaczmarek B. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials-A minireview. Materials. 2020; 13(14):3224.
Panthong S, Sakpakdeejaroen I, Kuropakornpong P, Jaicharoensub J, Itharat A. Antibacterial activity and stability evaluation of “Apo-taat” remedy extract for inhibiting diarrhoea-causing bacteria. Trop J Nat Prod Res. 2020; 4(12):1101–1107.
Cheng YF, Pranantyo D, Kasi G, Lu ZS, Li CM, Xu LQ. Amino-containing tannic acid derivative-mediated universal coatings for multifunctional surface modification. Biomater Sci. 2020; 8(8):2120–2128.
Badra B, Moustapha Soungalo D, Hafidha K, Rimmibtiri S, Muhammad AS, Aly S. Antimicrobial, Antibiofilm, And Probiofilm Effects Of Gallic Acid On Exopolysaccharide-Dependent And -Independent Biofilm Of Model Strains Streptococcus Thermophilus Cnrz 447 And Staphylococcus aureus Atcc 43300. J Microbiol Biotechnol Food Sci. 2022; e1781.
Lang S, Chen C, Xiang J, Liu Y, Li K, Hu Q, Liu G. Facile and Robust Antibacterial Functionalization of Medical Cotton Gauze with Gallic Acids to Accelerate Wound Healing. Ind Eng Chem Res. 2021; 60(28):10225–10234.
Shahrubudin N, Lee TC, Ramlan R. An overview on 3D printing technology: Technological, materials, and applications. Procedia Manuf. 2019; 35:1286–1296.
Bayraktar I, Doganay D, Coskun S, Kaynak C, Akca G, Unalan HE. 3D printed antibacterial silver nanowire/polylactide nanocomposites. Compos B Eng. 2019; 172:671–678.
Rengier F, Mehndiratta A, Von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL. 3D printing based on imaging data: Review of medical applications. Int J Comput Assist Radiol Surg. 2010; 5(4):335–341.
Yan Q, Dong H, Su J, Han J, Song B, Wei Q, Shi Y. A Review of 3D Printing Technology for Medical Applications. Eng. 2018; 4(5):729–742.
Hall DC, Palmer P, Ji HF, Ehrlich GD, Król JE. Bacterial Biofilm Growth on 3D-Printed Materials. Front Microbiol. 2021; 12:646303
McGuffie BA, Vallet-Gely I, Dove SL. σ factor and anti-σ factor that controls swarming motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol. 2016; 198(5):755–765.
Ford CA, Hurford IM, Cassat JE. Antivirulence Strategies for the Treatment of Staphylococcus aureus Infections: A Mini Review. Front Microbiol. 2021; 11:632706.
CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. CLSI. 2012; 32(2):1–68.
Zisman WA. Influence of Constitution on Adhesion. Ind. Eng. Chem. 1963; 55(10):18–38.
Alhashmi Alamer F, Althagafy K, Alsalmi O, Aldeih A, Alotaiby H, Althebaiti M, Alghamdi H, Alotibi N, Saeedi A, Zabarmawi Y, Hawsawi M, Alnefaie MA. Review on PEDOT: PSS-Based Conductive Fabric. ACS Omega. 2022; 7(40):35371–35386.
Sadiki M, Elabed S, Barkai H, Balouiri M, Nasri A, Koraichi SI. The modification of cedar wood surface properties for the prevention of fungal adhesion. Int J Adhes Adhes. 2017; 75:40–46.
Van Oss CJ. The forces involved in bioadhesion to flat surfaces and particles – their determination and relative roles. Biofouling. 1991; 4(1–3):25–35.
Van Oss CJ. Development and applications of the interfacial tension between water and organic or biological surfaces. Colloids Surf B Biointerfaces. 2007; 54(1):2–9.
Van Oss CJ. Acid-base interfacial interactions in aqueous media. Colloids Surf A Physicochem Eng Asp. 1993; 78:1–49.
Zouine N, Raouan SE, Elharchli E, El Ghachtouli N, El Abed S, Sadiki M, IBN Souda Koraichi S. Theoretical and experimental investigations of Staphylococcus aureus and Pseudomonas aeruginosa adhesion on 3D printed resin. Int J Adhes Adhes. 2022; 118:103234.
Soumya E, Saad IK, Abdellah H, Hassan L. Experimental and theoretical investigations of the adhesion time of Penicillium spores to cedar wood surface. Mater Sci Eng C. 2013; 33(3):1276–1281.
Dufrêne YF, Viljoen A, Mignolet J, Mathelié-Guinlet M. AFM in cellular and molecular microbiology. Cell Microbiol. 2021; 23(7):13324.
Kreve S, Reis ACD. Bacterial adhesion to biomaterials: What regulates this attachment? A review. Jpn Dent Sci Rev. 2021; 57:85–96.
Alam F, Balani K. Adhesion force of Staphylococcus aureus on various biomaterial surfaces. J Mech Behav Biomed Mater. 2017; 65:872–880.
Mei L, Busscher HJ, Van Der Mei HC, Ren Y. Influence of surface roughness on streptococcal adhesion forces to composite resins. Dent Mater. 2011; 27(8):770–778.
Wang C, Zhao Y, Zheng S, Xue J, Zhou J, Tang Y, Jiang L, Li W. Effect of enamel morphology on nanoscale adhesion forces of Streptococcal bacteria: An AFM study. Scanning. 2015; 37(5):313–321.
Yang K, Shi J, Wang L, Chen Y, Liang C, Yang L, Wang LN. Bacterial anti-adhesion surface design: Surface patterning, roughness, and wettability: A review. J Mater Sci Technol. 2022; 99:82–100.
Bui VD, Mwangi JW, Schubert A. Powder mixed electrical discharge machining for antibacterial coating on titanium implant surfaces. J Manuf Process. 2019; 44:261–270.
Truong VK, Pham VTH, Medvedev A, Lapovok R, Estrin Y, Lowe TC, Baulin V, Boshkovikj V, Fluke CJ, Crawford RJ, Ivanova EP. Self-organised nanoarchitecture of titanium surfaces influences the attachment of Staphylococcus aureus and Pseudomonas aeruginosa bacteria. Appl Microbiol Biotechnol. 2015; 99(16):6831–6840.
Oliveira WF, Silva PMS, Silva RCS, Silva GMM, Machado G, Coelho LCBB, Correia MTS. J Hosp Infect. 98(2):111–117.
Yoda I, Koseki H, Tomita M, Shida T, Horiuchi H, Sakoda H, Osaki M. Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion. BMC Microbiol. 2014; 14(1):234.
Mandal SM, Dias RO, Franco OL. Phenolic Compounds in Antimicrobial Therapy. J Med Food. 2017; 20(10):1031–1038.
Sivakumar S, Smiline Girija AS, Vijayashree Priyadharsini J. Evaluation of the inhibitory effect of caffeic acid and gallic acid on tetR and tetM efflux pumps mediating tetracycline resistance in Streptococcus sp., using computational approach. J King Saud Univ Sci. 2020; 32(1):904–909.
He W, Zhang Z, Chen J, Zheng Y, Xie Y, Liu W, Wu J, Mosselhy DA. Evaluation of the anti-biofilm activities of bacterial cellulose-Tannic acid-magnesium chloride composites using an in vitro multispecies biofilm model. Regen Biomater. 2021; 8(6):rbab054
Tintino SR, Morais-Tintino CD, Campina FF, Costa M do S, Menezes IRA, de Matos YMLS, Calixto-Júnior JT, Pereira PS, Siqueira-Junior JP, Leal-Balbino TC, Coutinho HDM, Balbino VQ. Tannic acid affects the phenotype of Staphylococcus aureus resistant to tetracycline and erythromycin by inhibition of efflux pumps. Bioorg Chem. 2017; 74:197–200.
Tyagi B, Dubey A, Kumar Verma B, Tiwari S. Antibacterial activity of phenolics compounds against pathogenic bacteria. Int. J. Pharm. Sci. Rev. Res. 35(1):16-18.
Payne DE, Martin NR, Parzych KR, Rickard AH, Underwood A, Boles BR. Tannic acid inhibits Staphylococcus aureus surface colonization in an isaA-dependent manner. Infect Immun. 2013; 81(2):496–504.
Bora N, Nath Jha A. Tannic acid: an efficient quorum sensing inhibitor. Int Conf Syst Process Phys Chem Biol. 2018; 1-4.
Baran EH, Yildirim Erbil H. Surface Modification of 3D Printed PLA Objects by Fused Deposition Modeling: A Review. Colloids Interfaces 2019; 3(2):43.
Li L, Ding S, Zhou C. Preparation and Degradation of PLA/Chitosan Composite Materials. J Appl Polym Sci. 2003; 91(1):274–277.
Badica P, Batalu ND, Balint E, Tudor N, Barbuceanu F, Peteoaca A, Micsa C, Eremia AD, Trancau OI, Burdusel M, Grigoroscuta MA, Aldica G V., Radu D, Porosnicu I, Tiseanu I. MgB2-based biodegradable materials for orthopaedic implants. J Mater Res Technol. 2022; 20:1399–1413.
Raouan SE, Zouine N, Harchli E El, EL Abed S, Sadiki M, Ghachtouli N El, Lachkar M, Ibnsouda SK. The theoretical adhesion of Staphylococcus aureus and Pseudomonas aeruginosa as nosocomial pathogens on 3D printing filament materials. Folia Microbiol. 2023; 68(4):627-632.
Van Der Mei HC, Bos R, Busscher HJ. A reference guide to microbial cell surface hydrophobicity based on contact angles. Colloids Surf B Biointerfaces. 1998; 11(4):213–221.
Shen L, Wang X, Li R, Yu H, Hong H, Lin H, Chen J, Liao BQ. Physicochemical correlations between membrane surface hydrophilicity and adhesive fouling in membrane bioreactors. J Colloid Interface Sci. 2017; 505:900–909.
Fern JB, Daughney CJ, Yee N, Davis TA. A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta. 1997; 61(16):3319–3328.
Yee N, Fein J. Cd adsorption onto bacterial surfaces: A universal adsorption edge? Geochim Cosmochim Acta. 2001; 65(13):2037–2042.
Hong Y, Brown DG. Cell surface acid-base properties of Escherichia coli and Bacillus brevis and variation as a function of growth phase, nitrogen source, and C: N ratio. Colloids Surf B Biointerfaces. 2006; 50(2):112–119.
Fatima Ha Robert N. Wenzel. Theory of Wetting Action at Solid Surfaces. Ind Eng Chem. 1943; 28(8):988–994.
Alakrach AM, Noriman NZ, Dahham OS, Hamzah R, Alsaadi MA, Shayfull Z, Syed Idrus SZ. J Phys Conf Ser. 2018; 1019(1):12065.
Luque-Agudo V, Romero-Guzmán D, Fernández-Grajera M, González-Martín L, Gallardo-Moreno AM. Ageing of solvent-casting PLA-Mg hydrophobic films: Impact on bacterial adhesion and viability. Coatings. 2019; 9(12):814.
Dabbaghi A, Kabiri K, Ramazani A, Zohuriaan-Mehr MJ, Jahandideh A. Synthesis of bio-based internal and external cross-linkers based on tannic acid for preparation of antibacterial superabsorbents. Polym Adv Technol. 2019; 30(11):2894–2905.
Xu G, Liu P, Pranantyo D, Neoh KG, Kang ET, Lay-Ming Teo S. One-Step Anchoring of Tannic Acid-Scaffolded Bifunctional Coatings of Antifouling and Antimicrobial Polymer Brushes. ACS Sustain Chem Eng. 2019; 7(1):1786–1795.
Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, Momtaz S, Abbasabadi Z, Rahimi R, Farzaei MH, Bishayee A. Pharmacological effects of gallic acid in health and disease: A mechanistic review. Iran J Basic Med Sci. 2019; 22(3):225–237.
Balouiri M, Bouhdid S, Sadiki M, Ouedrhiri W, Barkai H, El Farricha O, Ibnsouda SK, Harki EH. Effect of preconditioning cobalt and nickel-based dental alloys with Bacillus sp. extract on their surface physicochemical properties and theoretical prediction of Candida albicans adhesion. Mater Sci Eng C. 2017; 71:111–117.
Olewnik-Kruszkowska E, Gierszewska M, Jakubowska E, Tarach I, Sedlarik V, Pummerova M. Antibacterial films based on PVA and PVA-chitosan modified with poly(hexamethylene guanidine). Polymers. 2019; 11(12):2093.
Van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder’ AJB. The Role of Bacterial Cell Wall Hydrophobicity in Adhesion. Appl Environ Microbiol. 1987; 53(8):1893–1897.
Zheng S, Bawazir M, Dhall A, Kim HE, He L, Heo J, Hwang G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front Bioeng Biotechnol. 2021; 9:643722.
Ozkan E, Mondal A, Singha P, Douglass M, Hopkins SP, Devine R, Garren M, Manuel J, Warnock J, Handa H. Fabrication of Bacteria- And Blood-Repellent Superhydrophobic Polyurethane Sponge Materials. ACS Appl Mater Interfaces. 2020; 12(46):51160–51173.
Naderizadeh S, Dante S, Picone P, Di Carlo M, Carzino R, Athanassiou A, Bayer IS. Bioresin-based superhydrophobic coatings with reduced bacterial adhesion. J Colloid Interface Sci. 2020; 574:20–32.
Montgomerie Z, Popat KC. Improved hemocompatibility and reduced bacterial adhesion on superhydrophobic titania nanoflower surfaces. Mater Sci Eng C. 2021; 119:111503.
Qin XH, Senturk B, Valentin J, Malheiro V, Fortunato G, Ren Q, Rottmar M, Maniura-Weber K. Cell-Membrane-Inspired Silicone Interfaces that Mitigate Proinflammatory Macrophage Activation and Bacterial Adhesion. Langmuir. 2019; 35(5):1882–1894.
Moazzam P, Razmjou A, Golabi M, Shokri D, Landarani-Isfahani A. Investigating the BSA protein adsorption and bacterial adhesion of Al-alloy surfaces after creating a hierarchical (micro/nano) superhydrophobic structure. J Biomed Mater Res A. 2016; 104(9):2220–2233.
Tsibouklis J, Stone M, Thorpe AA, Graham P, Peters V, Heerlien R, Smith JR, Green KL, Nevell TG. Preventing bacterial adhesion onto surfaces: The low-surface-energy approach. Biomaterials. 1999; 20(13):1229–1235.
Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling. 2006; 22(5):339–360.