Alteration of the Hepatic Antioxidative System and Cytochrome P450 Enzymes by Pineapple Soup in Rats with MCAO-Induced Ischemic Stroke
Main Article Content
Abstract
Oxidative stress is a consequence of ischemic stroke caused by an imbalance between free radicals and the body’s antioxidant defense system. This imbalance primarily affects the liver, which is highly susceptible to oxidative damage. This study investigated the effects of pineapple soup and bromelain on the hepatic antioxidant system in rats subjected to ischemic stroke induced by middle cerebral artery occlusion (MCAO). Adult male Wistar rats were orally administered pineapple soup (500, 1,000, and 1,500 mg/kg/day) or bromelain (250 mg/kg/day) once daily for two weeks. Ischemic stroke was subsequently induced using the MCAO method. Induction of ischemic stroke increased hepatic levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and lipid peroxidation while decreasing the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG = 0.40±0.09). Activities of hepatic CYP1A2, CYP2B1, and CYP3A4 were also significantly reduced in MCAO rats. Pineapple soup normalized CYP1A2 and CYP2B1 activities, while CYP3A4 activity was markedly higher than in the sham-control. Both pineapple soup and bromelain significantly reduced SOD, CAT, GPX, and lipid peroxidation levels while increasing the GSH/GSSG ratio (0.43±0.06 to 0.56±0.02) and normalizing CYP activities in the liver of rats with ischemic stroke. The effects of pineapple soup were dose-dependent. Therefore, pineapple soup and bromelain show potential for mitigating acute oxidative stress in the liver of rats with MCAO-induced ischemic stroke.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci. 2020; 21:7609. DOI: 10.3390/ijms21207609
Abdu H, Tadese F, Seyoum G. Comparison of ischemic and hemorrhagic stroke in the medical ward of Dessie Referral Hospital, Northeast Ethiopia: a retrospective study. Neurol Res Int. 2021; 2021:1-9. DOI: 10.1155/2021/9996958
Palachai N, Wattanathorn J, Muchimapura S, Thukhammee W. Phytosome loading the combined extract of mulberry fruit and ginger protects against cerebral ischemia in metabolic syndrome rats. Oxid Med Cell Longev. 2020; 2020:1-15. DOI: 10.1155/2020/5305437
Orellana-Urzúa S, Rojas I, Líbano L, Rodrigo R. Pathophysiology of ischemic stroke: role of oxidative stress. Curr Pharm Des. 2020; 26:4246-4260. DOI: 10.2174/1381612826666200708133912
Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, Huai C, Shen L, Zhang N, He L, Qin S. Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci. 2021; 22:12808. DOI: 10.3390/ijms222312808
Muscari A, Collini A, Fabbri E, Giovagnoli M, Napoli C, Rossi V, Vizioli L, Bonfiglioli A, Magalotti D, Puddu GM, Zoli M. Changes of liver enzymes and bilirubin during ischemic stroke: mechanisms and possible significance. BMC Neurol. 2014; 14:1-8. DOI: 10.1186/1471-2377-14-122
Dorszewska J, Kowalska M, Prendecki M, Piekut T, Kozłowska J, Kozubski W. Oxidative stress factors in Parkinson’s disease. Neural Regen Res. 2021; 16:1383-1391. DOI: 10.4103/1673-5374.300980
Teleanu DM, Niculescu A-G, Lungu II, Radu CI, Vladâcenco O, Roza E, Costachescu B, Grumezescu AM, Teleanu RI. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci. 2022; 23:5938. DOI: 10.3390/ijms23115938
Maritim A, Dene BA, Sanders RA, Watkins III JB. Effects of β‐carotene on oxidative stress in normal and diabetic rats. J Biochem Mol Toxicol. 2002; 16:203-208. DOI: 10.1002/jbt.10038
Su XT, Wang L, Ma SM, Cao Y, Yang NN, Lin LL, FisherM, Yang JW, Liu CZ. Mechanisms of acupuncture in the regulation of oxidative stress in treating ischemic stroke. Oxid Med Cell Longev. 2020; 2020:7875396. DOI: 10.1155/2020/7875396
Debnath B, Singh WS, Manna K. A phytopharmacological review on Ananas comosus. Adv Tradit Med. 2023; 23:291-298. DOI:10.1007/s13596-021-00563-w
Hikisz P, Bernasinska-Slomczewska J. Beneficial properties of bromelain. Nutrients. 2021;13:4313. DOI: 10.3390/nu13124313
Muneaki H, Masashi N, Yohei K, Hiroshi S, Hirofumi KAI, Keishi Y, Manabu O. Inhibitory effects of fruit juices on cytochrome P450 2C9 activity in vitro. Biosci Biotechnol Biochem. 2008; 72:406-411. DOI: 10.1271/bbb.70511
Downer S, Berkowitz SA, Harlan TS, Olstad DL, Mozaffarian D. Food is medicine: actions to integrate food and nutrition into healthcare. BMJ. 2020; 369. DOI: 10.1136/bmj.m2482
Sriset Y, Sukkasem N, Chatuphonprasert W, Jarukamjorn K. Nephroprotective effects of hesperidin and myricetin against high-fat diet plus ethanol-induced renal oxidative damage in mice. Rev Bras Farmacogn. 2022; 32:555-562. DOI: 10.1007/s43450-022-00275-5
Nopwinyoowong N, Chatuphonprasert W, Tatiya-Aphiradee N, Jarukamjorn K. Garcinia mangostana and α-mangostinrRevive ulcerative colitis-modified hepatic cytochrome P450 profiles in mice. Pak J Biol Sci. 2022; 25:843-851. DOI: 10.3923/pjbs.2022.843.851
Chiang T, Messing RO, Chou WH. Mouse model of middle cerebral artery occlusion. JVis Exp. 2011; e2761. DOI: 10.3791/2761
Jebur AB, El-Demerdash FM, Kang W. Bromelain from Ananas comosus stem attenuates oxidative toxicity and testicular dysfunction caused by aluminum in rats. J Trace Elem Med Biol. 2020; 62:126631. DOI: 10.1016/j.jtemb.2020.126631
Mohamad NE, Yeap SK, Lim KL, Yusof HM, Beh BK, Tan SW, Ho WY, Sharifuddin SA, Jamaluddin A, Long K, Rahman NMAN, Alitheen NB. Antioxidant effects of pineapple vinegar in reversing of paracetamol-induced liver damage in mice. Chin Med. 2015; 10:1-10. DOI: 10.1186/s13020-015-0030-4
Inderhees J, Schwaninger M. Liver metabolism in ischemic stroke. Neurosci. 2024; 550:62-68. DOI: 10.1016/j.neuroscience.2023.12.013
Kaur J, Arora S, Singh B, Thakur LC, Gambhir J, Prabhu KM. Role of oxidative stress in pathophysiology of transient ischemic attack and stroke. Int J Biol Med Res. 2011; 2:611-615.
Seenak P, Kumphune S, Malakul W, Chotima R, Nernpermpisooth N. Pineapple consumption reduced cardiac oxidative stress and inflammation in high cholesterol diet-fed rats. Nutr Metab (Lond). 2021; 18:1-10. DOI: 10.1186/s12986-021-00566-z
Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138:103-141. DOI: 10.1016/j.pharmthera.2012.12.007
Orhan H, Karakuş F, Ergüç A. Mitochondrial biotransformation of drugs and other xenobiotics. Curr Drug Metab. 2021;22:657-669. DOI: 10.2174/1389200222666210628125020
Veith A, Moorthy B. Role of cytochrome P450s in the generation and metabolism of reactive oxygen species. Curr Opin Toxicol. 2018;7:44-51. DOI: 10.1016/j.cotox.2017.10.003
Chatuphonprasert W, Jarukamjorn K. Impact of six fruits-banana, guava, mangosteen, pineapple, ripe mango and ripe papaya-on murine hepatic cytochrome P450 activities. J Appl Toxicol. 2012;32:994-1001. DOI: 10.1002/jat.2740