Anti-mycobacterial activity of secondary metabolites from marine sponge Agelas sp
Main Article Content
Abstract
Marine sponge has become a significant source of natural products for the development of therapeutic agents. Therefore, this study aims to isolate anti-mycobacterial activity of marine sponge Agelas sp. During the experiment, ethanol was used for sponge extraction, and the resulting ethanol extract was separated into 7 fractions using open column chromatography. The fractions were subsequently purified by preparative high-performance liquid chromatography, and 1H-NMR and mass spectroscopy were used to identify and characterize the compounds that were obtained. Anti-mycobacterial activity testing was carried out using the disc diffusion method with Mycobacterium smegmatis bacteria. The results showed that the extract of Agelas sp. yielded 10 known compounds, namely 2-cyano-4,5-dibromo-1H-pyrrole (1), 4,5-dibromo-2-methyl carboxylate (2), 4,5-dibromo pyrrole-2-carboxylic acid (3), 4,5-dibromopyrrole-2-carboxamide (4), 5-bromopyrrole-2-carboamide (5), longamide (6), oroidin (7), keramadine (8), cyclooroidin (9), and manzacidin A (10). Compound 1 (2-cyano-4,5-dibromo-1H-pyrrole) inhibited Mycobacterium smegmatis bacteria, with an inhibition zone diameter of 7 mm at a dose of 50 g/disc. However, compounds 2-10 did not show any anti-mycobacterial activity at a dose of 50 g/disc. This study presented the first report on anti-mycobacterial activity of compound 1 (2-cyano-4,5-dibromo-1H-pyrrole).
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
How to Cite
References
World Health Organization. Global Tuberculosis report 2023 [Internet]. Geneva, Switzerland: WHO; 2023. Available from https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023 (Accessed 2024 Juli 05).
Ebada SS, Linh MH, Longeon A, De Voogd NJ, Durieu E, Meijer L, Bourguet-Kondracki ML, Singab AN, Müller WE, Proksch P. Dispacamide e and other bioactive bromopyrrole alkaloids from two Indonesian marine sponges of the genus Stylissa. Nat. Prod. Res. 2015;29(3):231-238.
Kovalerchik D, Singh RP, Schlesinger P, Mahajni A, Shefer S, Fridman M, Ilan M, Carmeli S. Bromopyrrole Alkaloids of the Sponge Agelas oroides Collected near the Israeli Mediterranean Coastline. J. Nat Prod. 2020;83(2):374-384.
Kusama T, Tanaka N, Kashiwada Y, Kobayashi J. Agelamadin F and tauroacidin E, bromopyrrole alkaloids from an Okinawan marine sponge Agelas sp. Tetrahedron Lett. 2015;56(30):4502-4504.
Li T, Li PL, Luo XC, Tang XL, Li GQ. Three new dibromopyrrole alkaloids from the South China Sea sponge Agelas nemoechinata. Tetrahedron Lett. 2019;60(30):1996-1998.
Magoulas GE. Ageladine A, a Bromopyrrole Alkaloid from the Marine Sponge Agelas nakamurai. Compounds. 2023;3(1):107-121.
Pech-Puch D, Forero AM, Fuentes-Monteverde JC, Lasarte-Monterrubio C, Martinez-Guitian M, González-Salas C, Guillén-Hernández S, Guillén-Hernández H, Beceiro A, Griesinger C, Rodríguez J, Jiménez C. Antimicrobial Diterpene Alkaloids from an Agelas citrina Sponge Collected in the Yucatán Peninsula. Mar. Drugs. 2022;20(5):1-12.
Sun YT, Lin B, Li SG, Liu M, Zhou YJ, Xu Y, Hua MY, Lin HW. New bromopyrrole alkaloids from the marine sponge Agelas sp. Tetrahedron. 2017;73(19):2786-2792.
Tanaka N, Kusama T, Kashiwada Y, Kobayashi J. Bromopyrrole alkaloids from Okinawan marine sponges Agelas spp. Chem. Pharm. Bull. 2016;64(7):691-694.
Zhu Y, Wang Y, Gu B Bin, Yang F, Jiao WH, Hu GH, Yu HB, Han BN, Zhang W, Shen Y, Lin HW. Antifungal bromopyrrole alkaloids from the South China Sea sponge Agelas sp. Tetrahedron. 2016;72(22):2964-2971.
Chu MJ, Tang XL, Qin GF, de Voogd NJ, Li PL, Li GQ. Three new non-brominated pyrrole alkaloids from the South China Sea sponge Agelas nakamurai. Chin. Chem. Lett. 2017;28(6):1210-1213.
Zhang H, Dong M, Chen J, Wang H, Tenney K, Crews P. Bioactive secondary metabolites from the marine sponge genus Agelas. Mar. Drug. 2017;15(11):351
Muñoz J, Köck M. Hybrid Pyrrole-Imidazole Alkaloids from the Sponge Agelas sceptrum. J. Nat. Prod. 2016;79(2):434-437.
Chu MJ, Li M, Ma H, Li PL, Li GQ. Secondary metabolites from marine sponges of the genus Agelas: A comprehensive update insight on structural diversity and bioactivity. RSC Adv. 2022;12(13):7789-7820.
Piron J, Betzi S, Pastour J, Restouin A, Castellano R, Collette Y, Tysklind N, Smith-Ravin J, Priam F. Antimicrobial and cytotoxic effects of marine sponge extracts Agelas clathrodes, Desmapsamma anchorata and Verongula rigida from a Caribbean Island. PeerJ. 2022;10:1–21.
Abdjul DB, Yamazaki H, Kanno SI, Takahashi O, Kirikoshi R, Ukai K, Namikoshi M. Structures and Biological Evaluations of Agelasines Isolated from the Okinawan Marine Sponge Agelas nakamurai. J. Nat. Prod. 2015;78(6):1428-1433.
Maarisit W, Untu SD, K. Lengkey YK, Mongi J, Kanter JW, Pareta DN, Sambou CN, Tumbel SL, Montolalu FM, Korua SA, Tulungen FR. Isolation and Evaluation of Anti-Mycobacterial Activity of Alkaloid Compounds from Marine Invertebrate Sponge Haliclona sp. Trop. J. Nat. Prod. Res. 2022;6:1622-1625.
Maarisit W, Untu SD, Lengkey YK, Lomban TC, Kanter JW, Yamazaki H, Namikoshi M, Losung F, Warouw V, Mangindaan, REP. Anti-Mycobacterial Activity of Polycarpine and Polycarpaurine A from an Indonesia Marine Ascidian Polycarpa sp. Trop. J. Nat. Prod. Res. 2023; 7(9): 3898–3901.
Ebada SS, Edrada-Ebel RA, De Voogd NJ, Wray V, Proksch P. Dibromopyrrole alkaloids from the marine sponge Acanthostylotella sp. Nat. Prod. Commun. 2009;4(1):47-52.
Cafieri F, Fattorusso E, Mangoni A, Taglialatela-Scafati O. Longamide and 3,7-dimethylisoguanine, two novel alkaloids from the marine sponge Agelas longissima. Tetrahedron Lett. 1995;36(43):7893-7896.
Abdjul DB, Yamazaki H, Kanno S ichi, Tomizawa A, Rotinsulu H, Wewengkang DS, Sumilat DA, Ukai K, Kapojos MM, Namikoshi M. An anti-mycobacterial bisfunctionalized sphingolipid and new bromopyrrole alkaloid from the Indonesian marine sponge Agelas sp. J. Nat. Med. 2017;71(3):531-536.
Bretzke S, Scheeff S, Vollmeyer F, Eberhagen F, Rominger F, Menche D. Modular synthesis of the pyrimidine core of the manzacidins by divergent Tsuji-Trost coupling. Beilstein J. Org. Chem. 2016;12:1111-1121.
König G, Wright A, Linden A. Antiplasmodial and cytotoxic metabolites from the Maltese sponge Agelas oroides. Planta Med. 1998; 64; 443–447.
Forenza S, Minale L, Riccio, R. New Bromo-pyrrole Derivatives from the Sponge Agelas oroides. Chem. Commun. 1971; 1129-1130
Nakamura H, Ohizumi Y, Kobayashi J. Keramadine, A Novel Antagonist of Serotonergic Receptors Isolated from the Okinawan Sea Sponge Agelas sp. Tetrahedron Lett. 1984; 25(23): 2475-2478
Fattorusso E, Taglialatela-Scafati O. Two novel pyrrole-imidazole alkaloids from the Mediterranean sponge Agelas oroides. Tetrahedron Lett. 2000; 41: 9917-9922.
Kobayashi J, Kanda F, Ishibashi M, Shigemori H. Manzacidins A-C, Novel Tetrahydropyrimidine Alkaloids from the Okinawan Marine Sponge Hymeniacidon sp. J.Org. Chem. 1991; 56: 4574-4576
Blanc L, Lenaerts A, Dartois V, Prideaux B. Visualization of Mycobacterial Biomarkers and Tuberculosis Drugs in Infected Tissue by MALDI-MS Imaging. Anal. Chem. 2018;90(10):6275-6282.
Sparks IL, Derbyshire KM, Jacobs WR, Morita YS. Mycobacterium smegmatis: The Vanguard of Mycobacterial Research. J. Bacteriol. 2023;205(1):1-16.
Tafroji W, Margyaningsih NI, Khoeri MM, Paramaiswari WT, Winarti Y, Salsabila K, Putri HFM, Siregar NC, Soebandrio A, Safari D. Antibacterial activity of medicinal plants in Indonesia on Streptococcus pneumoniae. PLoS ONE. 2022; 13;17(9):e0274174.
Scotti C, Barlow JW. Natural Products Containing the Nitrile Functional Group and Their Biological Activities. Nat. Prod. Commun. 2022;17(5).
Zhang H, Loveridge ST, Tenney K, Crews P. A new 3-alkylpyridine alkaloid from the marine sponge Haliclona sp. and its cytotoxic activity. Nat. Prod. Res. 2016;30(11):1262-1265.
Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SE, Lai KS, Chong CM. Bioactive compounds from marine sponges: Fundamentals and applications. Mar. Drugs. 2021; 19(5):246.
Woolly EF, Singh AJ, Russell ER, Miller JH, Northcote PT. Hamigerans R and S: Nitrogenous Diterpenoids from the New Zealand Marine Sponge Hamigera tarangaensis. J. Nat. Prod. 2018;81(2):387–393.
Avila C, Angulo-Preckler C. Bioactive Compounds from Marine Heterobranchs. Mar. Drugs. 2020;18(12):19–29.
Yan Y, Li X, Zhang C, Lv L, Gao B, Li M. Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics. 2021;10(3): 318.
Cushnie TPT, Cushnie B, Lamb AJ. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob Agents. 2014;44(5):377-386.
Hodnik Ž, Łoś JM, Žula A, Zidar N, Jakopin Ž, Łoś M, Dolenc MS, Ilaš J, Wegrzyn G, Mašicˇ LP, Kikelj D. Inhibition of biofilm formation by conformationally constrained indole-based analogues of the marine alkaloid oroidin. Bioorg. Med. Chem. Lett. 2014;24(11):2530-2534.
Zidar N, Montalvão S, Hodnik Ž, Nawrot DA, Žula A, Ilaš J, Kikelj D, Tammela P, Mašič LP. Antimicrobial activity of the marine alkaloids, clathrodin and oroidin, and their synthetic analogues. Mar. Drugs. 2014;12(2):940–963.
de Voogd NJ, Alvarez B, Boury-Esnault N, Cárdenas P, Díaz MC, Dohrmann M, Downey R, Goodwin C, Hajdu E, Hooper JNA, Kelly M, Klautau M, Lim SC, Manconi R, Morrow C, Pinheiro U, Pisera AB, Ríos P, Rützler K, Schönberg C, Turner T, Vacelet J, van Soest RWM, Xavier J. World Porifera Database 2024. Agelas Duchassaing & Michelotti, 1864. [Internet]. Available from : https://www.marinespecies.org/aphia.php?p=taxdetails&id=131771 (Accessed 2024 October 14).
Parra-Velandia FJ, Zea S, Van Soest RWM. Reef sponges of the genus Agelas (Porifera: Demospongiae) from the Greater Caribbean. Zootaxa, 2014; 3794 (3):301–343.